Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Annu Rev Nutr ; 37: 225-245, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28628359

RESUMO

Men and women exhibit significant differences in obesity, cardiovascular disease, and diabetes. To provide better diagnosis and treatment for both sexes, it is important to identify factors that underlie the observed sex differences. Traditionally, sex differences have been attributed to the differential effects of male and female gonadal secretions (commonly referred to as sex hormones), which substantially influence many aspects of metabolism and related diseases. Less appreciated as a contributor to sex differences are the fundamental genetic differences between males and females, which are ultimately determined by the presence of an XX or XY sex chromosome complement. Here, we review the mechanisms by which gonadal hormones and sex chromosome complement each contribute to lipid metabolism and associated diseases, and the current approaches that are used to study them. We focus particularly on genetic approaches including genome-wide association studies in humans and mice, -omics and systems genetics approaches, and unique experimental mouse models that allow distinction between gonadal and sex chromosome effects.


Assuntos
Hormônios Gonadais , Metabolismo dos Lipídeos/genética , Obesidade/genética , Cromossomos Sexuais , Animais , Feminino , Humanos , Masculino , Camundongos , Caracteres Sexuais , Fatores Sexuais
2.
BMC Genomics ; 18(1): 89, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28095800

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression by targeting specific mRNA species for degradation or interfering with translation. Specific miRNAs are key regulators of adipogenesis, and are expressed at different levels in adipose tissue from lean and obese mice. The degree of lipid accumulation and distribution of white adipose tissue differs between males and females, and it is unknown whether sex differences in adipose tissue-specific miRNA expression may contribute to this dimorphism. Typically, sex differences are attributed to hormones secreted from ovaries or testes. However, the sex chromosome complement (XX versus XY) is also a determinant of sex differences and may regulate miRNA expression in adipocytes. RESULTS: To identify sex differences in adipose tissue miRNA expression and to understand the underlying mechanisms, we performed high-throughput miRNA sequencing in gonadal fat depots of the Four Core Genotypes mouse model. This model, which consists of XX female, XX male, XY female, and XY male mice, allowed us to assess independent effects of gonadal type (male vs. female) and sex chromosome complement (XX vs. XY) on miRNA expression profiles. We have also assessed the effects of a high fat diet on sex differences in adipose tissue miRNA profiles. We identified a male-female effect on the overall miRNA expression profile in mice fed a chow diet, with a bias toward higher expression in male compared to female gonadal adipose tissue. This sex bias disappeared after gonadectomy, suggesting that circulating levels of gonadal secretions modulate the miRNA expression profile. After 16 weeks of high fat diet, the miRNA expression distribution was shifted toward higher expression in XY vs. XX adipose tissue. Principal component analysis revealed that high fat diet has a substantial effect on miRNA profile variance, while gonadal secretions and sex chromosome complement each have milder effects. CONCLUSIONS: Our results demonstrate that the overall miRNA expression profile in adipose tissue is influenced by gonadal hormones and the sex chromosome complement, and that expression profiles change in response to gonadectomy and high fat diet. Differential miRNA expression profiles may contribute to sex differences in adipose tissue gene expression, adipose tissue development, and diet-induced obesity.


Assuntos
Tecido Adiposo Branco/metabolismo , Dieta Hiperlipídica , Gônadas/metabolismo , MicroRNAs/genética , Cromossomos Sexuais/genética , Animais , Feminino , Biblioteca Gênica , Hormônios Gonadais/genética , Hormônios Gonadais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Análise de Componente Principal , Caracteres Sexuais , Transcriptoma
3.
Arterioscler Thromb Vasc Biol ; 35(8): 1778-86, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26112012

RESUMO

OBJECTIVE: The molecular mechanisms underlying sex differences in dyslipidemia are poorly understood. We aimed to distinguish genetic and hormonal regulators of sex differences in plasma lipid levels. APPROACH AND RESULTS: We assessed the role of gonadal hormones and sex chromosome complement on lipid levels using the four core genotypes mouse model (XX females, XX males, XY females, and XY males). In gonadally intact mice fed a chow diet, lipid levels were influenced by both male-female gonadal sex and XX-XY chromosome complement. Gonadectomy of adult mice revealed that the male-female differences are dependent on acute effects of gonadal hormones. In both intact and gonadectomized animals, XX mice had higher HDL cholesterol (HDL-C) levels than XY mice, regardless of male-female sex. Feeding a cholesterol-enriched diet produced distinct patterns of sex differences in lipid levels compared with a chow diet, revealing the interaction of gonadal and chromosomal sex with diet. Notably, under all dietary and gonadal conditions, HDL-C levels were higher in mice with 2 X chromosomes compared with mice with an X and Y chromosome. By generating mice with XX, XY, and XXY chromosome complements, we determined that the presence of 2 X chromosomes, and not the absence of the Y chromosome, influences HDL-C concentration. CONCLUSIONS: We demonstrate that having 2 X chromosomes versus an X and Y chromosome complement drives sex differences in HDL-C. It is conceivable that increased expression of genes escaping X-inactivation in XX mice regulates downstream processes to establish sexual dimorphism in plasma lipid levels.


Assuntos
HDL-Colesterol/sangue , Hipercolesterolemia/sangue , Hipercolesterolemia/genética , Cromossomo X , Cromossomo Y , Animais , Biomarcadores/sangue , Feminino , Dosagem de Genes , Genótipo , Hormônios Esteroides Gonadais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Orquiectomia , Ovariectomia , Ovário/metabolismo , Fenótipo , Caracteres Sexuais , Fatores Sexuais , Testículo/metabolismo , Regulação para Cima
4.
Dev Dyn ; 242(4): 371-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23361913

RESUMO

BACKGROUND: The classic model of sex determination in mammals states that the sex of the individual is determined by the type of gonad that develops, which in turn determines the gonadal hormonal milieu that creates sex differences outside of the gonads. However, XX and XY cells are intrinsically different because of the cell-autonomous sex-biasing action of X and Y genes. RESULTS: Recent studies of mice, in which sex chromosome complement is independent of gonadal sex, reveal that sex chromosome complement has strong effects contributing to sex differences in phenotypes such as metabolism. Adult mice with two X chromosomes (relative to mice with one X chromosome) show dramatically greater increases in body weight and adiposity after gonadectomy, irrespective of their gonadal sex. When fed a high-fat diet, XX mice develop striking hyperinsulinemia and fatty liver, relative to XY mice. The sex chromosome effects are modulated by the presence of gonadal hormones, indicating an interaction of the sex-biasing effects of gonadal hormones and sex chromosome genes. CONCLUSIONS: Other cell-autonomous sex chromosome effects are detected in mice in many phenotypes. Birds (relative to eutherian mammals) are expected to show more widespread cell-autonomous sex determination in non-gonadal tissues, because of ineffective sex chromosome dosage compensation mechanisms.


Assuntos
Cromossomos Sexuais/genética , Processos de Determinação Sexual , Adiposidade/genética , Animais , Aves/embriologia , Aves/genética , Peso Corporal/genética , Feminino , Hormônios Esteroides Gonadais/metabolismo , Gônadas/embriologia , Gônadas/metabolismo , Humanos , Masculino , Marsupiais/embriologia , Marsupiais/genética , Camundongos , Obesidade/genética , Diferenciação Sexual/genética , Inativação do Cromossomo X
5.
Nat Commun ; 15(1): 5571, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956041

RESUMO

Statin drugs lower blood cholesterol levels for cardiovascular disease prevention. Women are more likely than men to experience adverse statin effects, particularly new-onset diabetes (NOD) and muscle weakness. Here we find that impaired glucose homeostasis and muscle weakness in statin-treated female mice are associated with reduced levels of the omega-3 fatty acid, docosahexaenoic acid (DHA), impaired redox tone, and reduced mitochondrial respiration. Statin adverse effects are prevented in females by administering fish oil as a source of DHA, by reducing dosage of the X chromosome or the Kdm5c gene, which escapes X chromosome inactivation and is normally expressed at higher levels in females than males. As seen in female mice, we find that women experience more severe reductions than men in DHA levels after statin administration, and that DHA levels are inversely correlated with glucose levels. Furthermore, induced pluripotent stem cells from women who developed NOD exhibit impaired mitochondrial function when treated with statin, whereas cells from men do not. These studies identify X chromosome dosage as a genetic risk factor for statin adverse effects and suggest DHA supplementation as a preventive co-therapy.


Assuntos
Ácidos Docosa-Hexaenoicos , Inibidores de Hidroximetilglutaril-CoA Redutases , Mitocôndrias , Cromossomo X , Animais , Feminino , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Humanos , Cromossomo X/genética , Ácidos Docosa-Hexaenoicos/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Dosagem de Genes , Camundongos Endogâmicos C57BL , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Glucose/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/induzido quimicamente , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo
6.
J Clin Invest ; 130(11): 5688-5702, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32701509

RESUMO

Males and females differ in body composition and fat distribution. Using a mouse model that segregates gonadal sex (ovaries and testes) from chromosomal sex (XX and XY), we showed that XX chromosome complement in combination with a high-fat diet led to enhanced weight gain in the presence of male or female gonads. We identified the genomic dosage of Kdm5c, an X chromosome gene that escapes X chromosome inactivation, as a determinant of the X chromosome effect on adiposity. Modulating Kdm5c gene dosage in XX female mice to levels that are normally present in males resulted in reduced body weight, fat content, and food intake to a degree similar to that seen with altering the entire X chromosome dosage. In cultured preadipocytes, the levels of KDM5C histone demethylase influenced chromatin accessibility (ATAC-Seq), gene expression (RNA-Seq), and adipocyte differentiation. Both in vitro and in vivo, Kdm5c dosage influenced gene expression involved in extracellular matrix remodeling, which is critical for adipocyte differentiation and adipose tissue expansion. In humans, adipose tissue KDM5C mRNA levels and KDM5C genetic variants were associated with body mass. These studies demonstrate that the sex-dependent dosage of Kdm5c contributes to male/female differences in adipocyte biology and highlight X-escape genes as a critical component of female physiology.


Assuntos
Adipócitos/enzimologia , Adiposidade , Dosagem de Genes , Regulação Enzimológica da Expressão Gênica , Histona Desmetilases , Caracteres Sexuais , Cromossomo X , Animais , Montagem e Desmontagem da Cromatina , Feminino , Histona Desmetilases/biossíntese , Histona Desmetilases/genética , Humanos , Masculino , Camundongos , Camundongos Mutantes , Cromossomo X/genética , Cromossomo X/metabolismo
7.
Nat Commun ; 11(1): 644, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005828

RESUMO

Obesity and type 2 diabetes mellitus are global emergencies and long noncoding RNAs (lncRNAs) are regulatory transcripts with elusive functions in metabolism. Here we show that a high fraction of lncRNAs, but not protein-coding mRNAs, are repressed during diet-induced obesity (DIO) and refeeding, whilst nutrient deprivation induced lncRNAs in mouse liver. Similarly, lncRNAs are lost in diabetic humans. LncRNA promoter analyses, global cistrome and gain-of-function analyses confirm that increased MAFG signaling during DIO curbs lncRNA expression. Silencing Mafg in mouse hepatocytes and obese mice elicits a fasting-like gene expression profile, improves glucose metabolism, de-represses lncRNAs and impairs mammalian target of rapamycin (mTOR) activation. We find that obesity-repressed LincIRS2 is controlled by MAFG and observe that genetic and RNAi-mediated LincIRS2 loss causes elevated blood glucose, insulin resistance and aberrant glucose output in lean mice. Taken together, we identify a MAFG-lncRNA axis controlling hepatic glucose metabolism in health and metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2/genética , Glucose/metabolismo , Fígado/metabolismo , Fator de Transcrição MafG/genética , Obesidade/genética , RNA Longo não Codificante/genética , Proteínas Repressoras/genética , Idoso , Animais , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Fator de Transcrição MafG/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Obesidade/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
8.
Philos Trans R Soc Lond B Biol Sci ; 371(1688): 20150113, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26833834

RESUMO

Historically, it was thought that the number of X chromosomes plays little role in causing sex differences in traits. Recently, selected mouse models have been used increasingly to compare mice with the same type of gonad but with one versus two copies of the X chromosome. Study of these models demonstrates that mice with one X chromosome can be strikingly different from those with two X chromosomes, when the differences are not attributable to confounding group differences in gonadal hormones. The number of X chromosomes affects adiposity and metabolic disease, cardiovascular ischaemia/reperfusion injury and behaviour. The effects of X chromosome number are likely the result of inherent differences in expression of X genes that escape inactivation, and are therefore expressed from both X chromosomes in XX mice, resulting in a higher level of expression when two X chromosomes are present. The effects of X chromosome number contribute to sex differences in disease phenotypes, and may explain some features of X chromosome aneuploidies such as in Turner and Klinefelter syndromes.


Assuntos
Cromossomo X/genética , Animais , Feminino , Regulação da Expressão Gênica/fisiologia , Genótipo , Hormônios Esteroides Gonadais/metabolismo , Masculino , Fatores Sexuais
9.
Adipocyte ; 2(2): 74-9, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23805402

RESUMO

Obesity and associated metabolic diseases are sexually dimorphic. To provide better diagnosis and treatment for both sexes, it is of interest to identify the factors that underlie male/female differences in obesity. Traditionally, sexual dimorphism has been attributed to effects of gonadal hormones, which influence numerous metabolic processes. However, the XX/XY sex chromosome complement is an additional factor that may play a role. Recent data using the four core genotypes mouse model have revealed that sex chromosome complement-independently from gonadal sex-plays a role in adiposity, feeding behavior, fatty liver and glucose homeostasis. Potential mechanisms for the effects of sex chromosome complement include differential gene dosage from X chromosome genes that escape inactivation, and distinct genomic imprints on X chromosomes inherited from maternal or paternal parents. Here we review recent data in mice and humans concerning the potential impact of sex chromosome complement on obesity and metabolic disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA