Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Virol ; 97(2): e0142322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36692289

RESUMO

Concurrent infections with multiple pathogens are often described in cattle with respiratory illness. However, how the host-pathogen interactions influence the clinical outcome has been only partially explored in this species. Influenza D virus (IDV) was discovered in 2011. Since then, IDV has been detected worldwide in different hosts. A significant association between IDV and bacterial pathogens in sick cattle was shown in epidemiological studies, especially with Mycoplasma bovis. In an experimental challenge, IDV aggravated M. bovis-induced pneumonia. However, the mechanisms through which IDV drives an increased susceptibility to bacterial superinfections remain unknown. Here, we used the organotypic lung model precision-cut lung slices to study the interplay between IDV and M. bovis coinfection. Our results show that a primary IDV infection promotes M. bovis superinfection by increasing the bacterial replication and the ultrastructural damages in lung pneumocytes. In our model, IDV impaired the innate immune response triggered by M. bovis by decreasing the expression of several proinflammatory cytokines and chemokines that are important for immune cell recruitment and the bacterial clearance. Stimulations with agonists of cytosolic helicases and Toll-like receptors (TLRs) revealed that a primary activation of RIG-I/MDA5 desensitizes the TLR2 activation, similar to what was observed with IDV infection. The cross talk between these two pattern recognition receptors leads to a nonadditive response, which alters the TLR2-mediated cascade that controls the bacterial infection. These results highlight innate immune mechanisms that were not described for cattle so far and improve our understanding of the bovine host-microbe interactions and IDV pathogenesis. IMPORTANCE Since the spread of the respiratory influenza D virus (IDV) infection to the cattle population, the question about the impact of this virus on bovine respiratory disease (BRD) remains still unanswered. Animals affected by BRD are often coinfected with multiple pathogens, especially viruses and bacteria. In particular, viruses are suspected to enhance secondary bacterial superinfections. Here, we use an ex vivo model of lung tissue to study the effects of IDV infection on bacterial superinfections. Our results show that IDV increases the susceptibility to the respiratory pathogen Mycoplasma bovis. In particular, IDV seems to activate immune pathways that inhibit the innate immune response against the bacteria. This may allow M. bovis to increase its proliferation and to delay its clearance from lung tissue. These results suggest that IDV could have a negative impact on the respiratory pathology of cattle.


Assuntos
Doenças dos Bovinos , Interações entre Hospedeiro e Microrganismos , Infecções por Mycoplasma , Infecções por Orthomyxoviridae , Transdução de Sinais , Thogotovirus , Animais , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/virologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/virologia , Mycoplasma bovis/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologia , Transdução de Sinais/imunologia , Superinfecção/imunologia , Superinfecção/veterinária , Receptor 2 Toll-Like , Interações entre Hospedeiro e Microrganismos/imunologia , Infecções por Mycoplasma/imunologia , Infecções por Mycoplasma/virologia
2.
J Virol ; 94(18)2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32611750

RESUMO

Since its detection in swine, influenza D virus (IDV) has been shown to be present in multiple animal hosts, and bovines have been identified as its natural reservoir. However, it remains unclear how IDVs emerge, evolve, spread, and maintain in bovine populations. Through multiple years of virological and serological surveillance in a single order-buyer cattle facility in Mississippi, we showed consistently high seroprevalence of IDVs in cattle and recovered a total of 32 IDV isolates from both healthy and sick animals, including those with antibodies against IDV. Genomic analyses of these isolates along with those isolated from other areas showed that active genetic reassortment occurred in IDV and that five reassortants were identified in the Mississippian facility. Two antigenic groups were identified through antigenic cartography analyses for these 32 isolates and representative IDVs from other areas. Remarkably, existing antibodies could not protect cattle from experimental reinfection with IDV. Additional phenotypic analyses demonstrated variations in growth dynamics and pathogenesis in mice between viruses independent of genomic constellation. In summary, this study suggests that, in addition to epidemiological factors, the ineffectiveness of preexisting immunity and cocirculation of a diverse viral genetic pool could facilitate its high prevalence in animal populations.IMPORTANCE Influenza D viruses (IDVs) are panzootic in multiple animal hosts, but the underlying mechanism is unclear. Through multiple years of surveillance in the same order-buyer cattle facility, 32 IDV isolates were recovered from both healthy and sick animals, including those with evident antibodies against IDV. Active reassortment occurred in the cattle within this facility and in those across other areas, and multiple reassortants cocirculated in animals. These isolates are shown with a large extent of phenotypic diversity in replication efficiency and pathogenesis but little in antigenic properties. Animal experiments demonstrated that existing antibodies could not protect cattle from experimental reinfection with IDV. This study suggests that, in addition to epidemiological factors, limited protection from preexisting immunity against IDVs in cattle herds and cocirculation of a diverse viral genetic pool likely facilitate the high prevalence of IDVs in animal populations.


Assuntos
Anticorpos Antivirais/sangue , Proteção Cruzada , Genoma Viral , Infecções por Orthomyxoviridae/epidemiologia , Vírus Reordenados/imunologia , Thogotovirus/imunologia , Animais , Bovinos , Monitoramento Epidemiológico , Fazendas , Variação Genética , Genótipo , Hospitais Veterinários , Imunidade Inata , Camundongos , Mississippi/epidemiologia , Tipagem Molecular , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Filogenia , Vírus Reordenados/classificação , Vírus Reordenados/genética , Vírus Reordenados/patogenicidade , Estudos Soroepidemiológicos , Thogotovirus/classificação , Thogotovirus/genética , Thogotovirus/patogenicidade , Replicação Viral
3.
Avian Pathol ; 48(2): 121-134, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30556415

RESUMO

It is well established that the endothelium plays a prominent role in the pathogenesis of various infectious diseases in mammals. However, little is known about the role of endothelial cells (EC) as targets for avian pathogens and their contribution to the pathogenesis of infectious diseases in galliform birds. First, we explored the innate immune response of primary chicken aortic endothelial cells (pchAEC), obtained from 18-day-old embryos, to stimulation with pathogen-associated molecular patterns or recombinant chicken interferons (type I, II and III IFNs). In spite of the abundant expression of a number of innate immune receptors, marked cytokine responses to stimulation with pathogen-associated molecular patterns were only seen in pchAEC treated with the TLR3 agonist polyI:C (pI:C) and the MDA5 agonist liposome-complexed polyI:C (L-pI:C), as was assessed by quantitative PCR and luciferase-based IFN-I/NFκB reporter assays. Treatments of pchAEC with IFN-α, IFN-γ and IFN-λ resulted in STAT1-phosphorylation/activation, as was revealed by immunoblotting. Next, we demonstrated that pchAEC are susceptible to infection with a variety of poultry pathogens, including Marek's disease virus (MDV), infectious bursal disease virus (IBDV), avian pathogenic Escherichia coli (APEC) and Eimeria tenella. Our data highlight that chicken EC are potential targets for viral, bacterial and protozoan pathogens in gallinaceous poultry and may partake in the inflammatory and antimicrobial response. The pchAEC infection model used herein will allow further studies interrogating avian pathogen interactions with vascular EC. RESEARCH HIGHLIGHTS Use of a well-defined primary chicken aortic endothelial cell (pchAEC) culture model for studying avian host-pathogen interactions. pchAEC are responsive to innate immune stimulation with viral pathogen-associated molecular patterns and chicken type I, II and III interferons. pchAEC are susceptible to infections with economically important poultry pathogens, including MDV, IBDV, APEC and Eimeria tenella.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Interferons/metabolismo , Doenças das Aves Domésticas/imunologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Embrião de Galinha , Galinhas , Células Endoteliais/imunologia , Endotélio/imunologia , Feminino , Inflamação/microbiologia , Inflamação/parasitologia , Inflamação/veterinária , Interferons/genética , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/parasitologia
4.
Virol J ; 15(1): 55, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29587792

RESUMO

BACKGROUND: Non-structural protein NS1 of influenza A viruses harbours several determinants of pathogenicity and host-range. However it is still unclear to what extent each of its two structured domains (i.e. RNA-binding domain, RBD, and effector domain, ED) contribute to its various activities. METHODS: To evaluate the respective contributions of the two domains, we genetically engineered two variants of an H7N1 low pathogenicity avian influenza virus harbouring amino-acid substitutions that impair the functionality of either domain. The RBD- and ED-mutant viruses were compared to their wt- counterpart in vivo and in vitro, notably in chicken infection and avian cell culture models. RESULTS: The double substitution R38A-K41A in the RBD dramatically reduced the pathogenicity and replication potential of the virus, whereas the substitution A149V that was considered to abrogate the IFN-antagonistic activity of the effector domain entailed much less effects. While all three viruses initiated the viral life cycle in avian cells, replication of the R38A-K41A virus was severely impaired. This defect was associated with a delayed synthesis of nucleoprotein NP and a reduced accumulation of NS1, which was found to reach a concentration of about 30 micromol.L- 1 in wt-infected cells at 8 h post-infection. When overexpressed in avian lung epithelial cells, both the wt-NS1 and 3841AA-NS1, but not the A149V-NS1, reduced the poly(I:C)-induced activation of the IFN-sensitive chicken Mx promoter. Unexpectedly, the R38A-K41A substitution in the recombinant RBD did not alter its in vitro affinity for a model dsRNA. When overexpressed in avian cells, both the wt- and A149V-NS1s, as well as the individually expressed wt-RBD to a lesser extent, enhanced the activity of the reconstituted viral RNA-polymerase in a minireplicon assay. CONCLUSIONS: Collectively, our data emphasized the critical importance and essential role of the RNA-binding domain in essential steps of the virus replication cycle, notably expression and translation of viral mRNAs.


Assuntos
Vírus da Influenza A Subtipo H7N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H7N1/patogenicidade , Influenza Aviária/virologia , Motivos de Ligação ao RNA/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Substituição de Aminoácidos , Animais , Linhagem Celular , Embrião de Galinha , Galinhas , Modelos Animais de Doenças , Cães , Expressão Gênica , Regulação Viral da Expressão Gênica , Vírus da Influenza A Subtipo H7N1/genética , Células Madin Darby de Rim Canino , Motivos de Ligação ao RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas Virais/biossíntese , Virulência/genética
5.
Arch Virol ; 160(1): 161-71, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25298182

RESUMO

Gallid herpesvirus 2 (GaHV-2) is the alphaherpesvirus responsible for Marek's disease (MD), a T-cell lymphoma of chickens. The virulence of the GaHV-2 field strain is steadily increasing, but MD is still controlled by the CVI988/Rispens vaccine. We tried to determine distinguishing traits of the CVI988/Rispens vaccine by focusing on the 5' end region of the latency-associated transcript (5'LAT). It includes a variable number of 60-bp tandem repeats depending on the GaHV-2 strain. By analyzing six batches of vaccine, we showed that CVI988/Rispens consisted of a population of 5'LAT molecular subtypes, all with deletions and lacking 60-bp tandem repeat motifs, with two major subtypes that probably constitute CVI988/Rispens markers. Serial passages in cell culture led to a substantial change in the frequency of CVI988/Rispens 5'LAT subtypes, with non-deleted subtypes harboring up to four 60-bp repeats emerging during the last few passages. Dynamic changes in the distribution of 5'LAT-deleted subtypes were also detected after infection of chickens. By contrast, the 5'LAT region of the oncogenic clonal RB-1B strain, which was investigated at every step from the isolation of the clonal bacmid RB-1B DNA to the isolation of the ovarian lymphoma cell line, consisted of non-deleted 5'LAT subtypes harboring at least two 60-bp repeats. Thus, vaccine and oncogenic GaHV-2 strains consist of specific populations of viral genomes that are constantly evolving in vivo and in vitro and providing potential markers for epidemiological surveys.


Assuntos
Evolução Molecular , Regulação Viral da Expressão Gênica/fisiologia , Variação Genética , Herpesvirus Galináceo 2/classificação , Doença de Marek/virologia , Proteínas Virais/metabolismo , Vacinas Virais/imunologia , Animais , Galinhas , Herpesvirus Galináceo 2/genética , Doença de Marek/prevenção & controle , Organismos Livres de Patógenos Específicos , Proteínas Virais/genética
6.
J Gen Virol ; 95(Pt 6): 1233-1243, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24694396

RESUMO

Currently circulating H5N1 influenza viruses have undergone a complex evolution since the appearance of their progenitor A/Goose/Guangdong/1/96 in 1996. After the eradication of the H5N1 viruses that emerged in Hong Kong in 1997 (HK/97 viruses), new genotypes of H5N1 viruses emerged in the same region in 2000 that were more pathogenic for both chickens and mice than HK/97 viruses. These, as well as virtually all highly pathogenic H5N1 viruses since 2000, harbour a deletion of aa 80-84 in the unstructured region of the non-structural (NS) protein NS1 linking its RNA-binding domain to its effector domain. NS segments harbouring this mutation have since been found in non-H5N1 viruses and we asked whether this 5 aa deletion could have a general effect not limited to the NS1 of H5N1 viruses. We genetically engineered this deletion in the NS segment of a duck-origin avian H1N1 virus, and compared the in vivo and in vitro properties of the WT and NSdel8084 viruses. In experimentally infected chickens, the NSdel8084 virus showed both an increased replication potential and an increased pathogenicity. This in vivo phenotype was correlated with a higher replicative efficiency in vitro, both in embryonated eggs and in a chicken lung epithelial cell line. Our data demonstrated that the increased replicative potential conferred by this small deletion was a general feature not restricted to NS1 from H5N1 viruses and suggested that viruses acquiring this mutation may be selected positively in the future.


Assuntos
Vírus da Influenza A Subtipo H1N1/fisiologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Embrião de Galinha , Galinhas , Citocinas/genética , DNA Viral/genética , Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Influenza Aviária/imunologia , Influenza Aviária/patologia , Influenza Aviária/virologia , Interferon Tipo I/biossíntese , Pulmão/patologia , Pulmão/virologia , Camundongos , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência , Especificidade da Espécie , Carga Viral , Proteínas não Estruturais Virais/genética , Virulência/genética , Virulência/fisiologia , Replicação Viral/genética , Replicação Viral/fisiologia
7.
Viruses ; 16(3)2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38543727

RESUMO

The role of Influenza D virus (IDV) in bovine respiratory disease remains unclear. An in vivo experiment resulted in increased clinical signs, lesions, and pathogen replication in calves co-infected with IDV and Mycoplasma bovis (M. bovis), compared to single-infected calves. The present study aimed to elucidate the host-pathogen interactions and profile the kinetics of lipid mediators in the airways of these calves. Bronchoalveolar lavage (BAL) samples collected at 2 days post-infection (dpi) were used for proteomic analyses by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Additionally, lipidomic analyses were performed by LC-MS/MS on BAL samples collected at 2, 7 and 14 dpi. Whereas M. bovis induced the expression of proteins involved in fibrin formation, IDV co-infection counteracted this coagulation mechanism and downregulated other acute-phase response proteins, such as complement component 4 (C4) and plasminogen (PLG). The reduced inflammatory response against M. bovis likely resulted in increased M. bovis replication and delayed M. bovis clearance, which led to a significantly increased abundance of oxylipids in co-infected calves. The identified induced oxylipids mainly derived from arachidonic acid; were likely oxidized by COX-1, COX-2, and LOX-5; and peaked at 7 dpi. This paper presents the first characterization of BAL proteome and lipid mediator kinetics in response to IDV and M. bovis infection in cattle and raises hypotheses regarding how IDV acts as a co-pathogen in bovine respiratory disease.


Assuntos
Doenças dos Bovinos , Mycoplasma bovis , Infecções Respiratórias , Animais , Bovinos , Deltainfluenzavirus , Cromatografia Líquida , Lipidômica , Proteômica , Espectrometria de Massas em Tandem , Interações Hospedeiro-Patógeno , Lipídeos
8.
J Immunol Methods ; 504: 113256, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35300990

RESUMO

Type I interferon (IFN-I) plays a major role in antiviral and inflammatory processes of the infected host. In the bovine industry, the bovine respiratory disease complex is a major cause of economic and health problems. This disease is caused by interactions of pathogens, together with environmental and host factors. Several pathogens have been identified as causal agents of respiratory diseases in cattle. To better understand how primary infections by viruses predispose animals to further infections by pathogenic bacteria, tools to accurately detect antiviral and immunoregulatory cytokines are needed. To facilitate the detection and quantification of bovine IFN-I, we have established a new specific and sensitive bioassay studies in the bovine host. This assay is based on a Madin-Darby Bovine Kidney (MDBK) cell line that carries a luciferase gene under the control of the IFN-I inducible bovine Mx1 promoter. Specific luciferase activity was measured after stimulation with serial dilutions of recombinant bovine alpha and beta IFNs and human IFN-α. With this novel bioassay we have successfully measured IFN-I production in supernatant from MDBK cells after stimulation of Toll-like receptors (TLR3, TLR7 and TLR8) and RIG-I-like receptors (RIG-I and MDA5), after viral infection with bovine respiratory pathogens, but also in samples from infected calves. Finally, this new bioassay is an easy-to-use and low cost tool to measure the production of bovine Type-I Interferon.


Assuntos
Interferon Tipo I , Vírus , Animais , Antivirais , Bioensaio , Bovinos , Linhagem Celular , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Vírus/metabolismo
9.
Microbiol Spectr ; 9(3): e0169021, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34937196

RESUMO

Bovine respiratory disease (BRD) is a major disease of young cattle whose etiology lies in complex interactions between pathogens and environmental and host factors. Despite a high frequency of codetection of respiratory pathogens in BRD, data on the molecular mechanisms and pathogenesis associated with viral and bacterial interactions are still limited. In this study, we investigated the effects of a coinfection with influenza D virus (IDV) and Mycoplasma bovis in cattle. Naive calves were infected by aerosol with a French IDV strain and an M. bovis strain. The combined infection shortened the incubation period, worsened the disease, and led to more severe macroscopic and microscopic lesions compared to these parameters in calves infected with only one pathogen. In addition, IDV promoted colonization of the lower respiratory tract (LRT) by M. bovis and increased white cell recruitment to the airway lumen. The transcriptomic analysis highlighted an upregulation of immune genes in the lungs of coinfected calves. The gamma interferon (IFN-γ) gene was shown to be the gene most statistically overexpressed after coinfection at 2 days postinfection (dpi) and at least until 7 dpi, which correlated with the high level of lymphocytes in the LRT. Downregulation of the PACE4 and TMPRSS2 endoprotease genes was also highlighted, being a possible reason for the faster clearance of IDV in the lungs of coinfected animals. Taken together, our coinfection model with two respiratory pathogens that when present alone induce moderate clinical signs of disease was shown to increase the severity of the disease in young cattle and a strong transcriptomic innate immune response in the LRT, especially for IFN-γ. IMPORTANCE Bovine respiratory disease (BRD) is among the most prevalent diseases in young cattle. BRD is due to complex interactions between viruses and/or bacteria, most of which have a moderate individual pathogenicity. In this study, we showed that coinfection with influenza D virus (IDV) and Mycoplasma bovis increased the severity of the respiratory disease in calves in comparison with IDV or M. bovis infection. IDV promoted M. bovis colonization of the lower respiratory tract and increased white cell recruitment to the airway lumen. The transcriptomic analysis highlighted an upregulation of immune genes in the lungs of coinfected calves. The IFN-γ gene in particular was highly overexpressed after coinfection, correlated with the disease severity, immune response, and white cell recruitment in the lungs. In conclusion, we showed that IDV facilitates coinfections within the BRD complex by modulating the local innate immune response, providing new insights into the mechanisms involved in severe respiratory diseases.


Assuntos
Complexo Respiratório Bovino/patologia , Coinfecção/patologia , Imunidade Inata/imunologia , Infecções por Mycoplasma/veterinária , Infecções por Orthomyxoviridae/veterinária , Animais , Complexo Respiratório Bovino/microbiologia , Bovinos , Coinfecção/imunologia , Coinfecção/microbiologia , Interferon gama/imunologia , Infecções por Mycoplasma/patologia , Mycoplasma bovis/imunologia , Infecções por Orthomyxoviridae/patologia , Índice de Gravidade de Doença , Thogotovirus/imunologia
10.
Virology ; 513: 29-42, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29031164

RESUMO

Endotheliotropism is a hallmark of gallinaceous poultry infections with highly pathogenic avian influenza (HPAI) viruses and a feature that distinguishes HPAI from low pathogenic avian influenza (LPAI) viruses. Here, we used chicken aortic endothelial cells (chAEC) as a novel in vitro infection model to assess the susceptibility, permissiveness, and host response of chicken endothelial cells (EC) to infections with avian influenza (AI) viruses. Our data show that productive replication of AI viruses in chAEC is critically determined by hemagglutinin cleavability, and is thus an exclusive trait of HPAI viruses. However, we provide evidence for a link between limited (i.e. trypsin-dependent) replication of certain LPAI viruses, and the viruses' ability to dampen the antiviral innate immune response in infected chAEC. Strikingly, this cell response pattern was also detected in HPAI virus-infected chAEC, suggesting that viral innate immune escape might be a prerequisite for robust AI virus replication in chicken EC.


Assuntos
Células Endoteliais/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Evasão da Resposta Imune , Imunidade Inata , Vírus da Influenza A/fisiologia , Internalização do Vírus , Replicação Viral , Animais , Galinhas , Células Endoteliais/imunologia , Vírus da Influenza A/imunologia , Proteólise
11.
Dev Comp Immunol ; 86: 156-170, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29729283

RESUMO

Mammalian type I interferons (IFNα/ß) are known to modulate inflammatory processes in addition to their antiviral properties. Indeed, virus-induced type I interferons regulate the mammalian phagocyte immune response to bacteria during superinfections. However, it remains unresolved whether type I IFNs similarly impact the chicken macrophage immune response. We first evidenced that IFNα and IFNß act differently in terms of gene expression stimulation and activation of intracellular signaling pathways in chicken macrophages. Next, we showed that priming of chicken macrophages with IFNα increased bacteria uptake, boosted bacterial-induced ROS/NO production and led to an increased transcriptional expression or production of NOS2/NO, IL1B/IL-1ß and notably IFNB/IFNß. Neutralization of IFNß during bacterial challenge limited IFNα-induced augmentation of the pro-inflammatory response. In conclusion, we demonstrated that type I IFNs differently regulate chicken macrophage functions and drive a pro-inflammatory response to bacterial challenge. These findings shed light on the diverse functions of type I IFNs in chicken macrophages.


Assuntos
Bactérias/imunologia , Galinhas/imunologia , Inflamação/imunologia , Interferon-alfa/imunologia , Interferon beta/imunologia , Macrófagos/imunologia , Animais , Galinhas/microbiologia , Expressão Gênica/imunologia , Inflamação/microbiologia , Macrófagos/microbiologia , Óxidos de Nitrogênio/imunologia , Espécies Reativas de Oxigênio/imunologia , Transdução de Sinais/imunologia
12.
Front Vet Sci ; 4: 226, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326957

RESUMO

Lipid mediators are known to play important roles in the onset and resolution phases of the inflammatory response in mammals. The phospholipid platelet-activating factor (PAF) is a pro-inflammatory lipid mediator which participates in vascular- and innate immunity-associated processes by increasing vascular permeability, by facilitating leukocyte adhesion to the endothelium, and by contributing to phagocyte activation. PAF exerts its function upon binding to its specific receptor, PAF receptor (PAFR), which is abundantly expressed in leukocytes and endothelial cells (ECs). In chickens, lipid mediators and their functions are still poorly characterized, and the role of PAF as an inflammatory mediator has not yet been investigated. In the present study we demonstrate that primary chicken macrophages express PAFR and lysophosphatidylcholine acyltransferase 2 (LPCAT2), the latter being essential to PAF biosynthesis during inflammation. Also, exogenous PAF treatment induces intracellular calcium increase, reactive oxygen species release, and increased phagocytosis by primary chicken macrophages in a PAFR-dependent manner. We also show that PAF contributes to the Escherichia coli lipopolysaccharide (LPS)-induced pro-inflammatory response and boosts the macrophage response to E. coli LPS via phosphatidylinositol 3-kinase/Akt- and calmodulin kinase II-mediated intracellular signaling pathways. Exogenous PAF treatment also increases avian pathogenic E. coli intracellular killing by chicken macrophages, and PAFR and LPCAT2 are upregulated in chicken lungs and liver during experimental pulmonary colibacillosis. Finally, exogenous PAF treatment increases cell permeability and upregulates the expression of genes coding for proteins involved in leukocyte adhesion to the endothelium in primary chicken endothelial cells (chAEC). In addition to these vascular phenomena, PAF boosts the chAEC inflammatory response to bacteria-associated molecular patterns in a PAFR-dependent manner. In conclusion, we identified PAF as an inflammation amplifier in chicken macrophages and ECs, which suggests that PAF could play important roles in the endothelium-innate immunity interface in birds during major bacterial infectious diseases such as colibacillosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA