Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Pathog ; 15(3): e1007511, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30893371

RESUMO

While much is known about acute infection pathogenesis, the understanding of chronic infections has lagged. Here we sought to identify the genes and functions that mediate fitness of the pathogen Pseudomonas aeruginosa in chronic wound infections, and to better understand the selective environment in wounds. We found that clinical isolates from chronic human wounds were frequently defective in virulence functions and biofilm formation, and that many virulence and biofilm formation genes were not required for bacterial fitness in experimental mouse wounds. In contrast, genes involved in anaerobic growth, some metabolic and energy pathways, and membrane integrity were critical. Consistent with these findings, the fitness characteristics of some wound impaired-mutants could be represented by anaerobic, oxidative, and membrane-stress conditions ex vivo, and more comprehensively by high-density bacterial growth conditions, in the absence of a host. These data shed light on the bacterial functions needed in chronic wound infections, the nature of stresses applied to bacteria at chronic infection sites, and suggest therapeutic targets that might compromise wound infection pathogenesis.


Assuntos
Proliferação de Células/fisiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Cicatrização/fisiologia , Adulto , Animais , Bactérias/crescimento & desenvolvimento , Infecções Bacterianas/metabolismo , Biofilmes/crescimento & desenvolvimento , Modelos Animais de Doenças , Feminino , Aptidão Genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Masculino , Camundongos , Infecções por Pseudomonas , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Virulência/fisiologia , Infecção dos Ferimentos/metabolismo , Infecção dos Ferimentos/microbiologia
2.
Appl Microbiol Biotechnol ; 97(5): 2093-107, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22915193

RESUMO

High hydrostatic pressure (HHP) is a stress that exerts broad effects on microorganisms with characteristics similar to those of common environmental stresses. In this study, we aimed to identify genetic mechanisms that can enhance alcoholic fermentation of wild Saccharomyces cerevisiae isolated from Brazilian spirit fermentation vats. Accordingly, we performed a time course microarray analysis on a S. cerevisiae strain submitted to mild sublethal pressure treatment of 50 MPa for 30 min at room temperature, followed by incubation for 5, 10 and 15 min without pressure treatment. The obtained transcriptional profiles demonstrate the importance of post-pressurisation period on the activation of several genes related to cell recovery and stress tolerance. Based on these results, we over-expressed genes strongly induced by HHP in the same wild yeast strain and identified genes, particularly SYM1, whose over-expression results in enhanced ethanol production and stress tolerance upon fermentation. The present study validates the use of HHP as a biotechnological tool for the fermentative industries.


Assuntos
Etanol/metabolismo , Expressão Gênica , Pressão Hidrostática , Saccharomyces cerevisiae/fisiologia , Estresse Fisiológico , Brasil , Perfilação da Expressão Gênica , Redes e Vias Metabólicas/genética , Análise em Microsséries , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
3.
Proc Natl Acad Sci U S A ; 106(47): 19928-33, 2009 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-19901341

RESUMO

Genes required for ribosome biogenesis in yeast, referred to collectively as the Ribi regulon, are tightly regulated in coordination with nutrient availability and cellular growth rate. The promoters of a significant fraction of Ribi genes contain one or more copies of the RNA polymerases A and C (PAC) and/or ribosomal RNA-processing element (RRPE) motifs. Prompted by recent studies showing that the yeast protein Dot6 and its homolog Tod6 can bind to a PAC motif sequence in vitro and are required for efficient Ribi gene repression in response to heat shock, we have examined the role of Dot6 and Tod6 in nutrient control of Ribi gene expression in vivo. Our results indicate that PAC sites function as Dot6/Tod6-dependent repressor elements in vivo. Moreover, Dot6 and Tod6 mediate different nutrient signals, with Tod6 responsible for efficient repression of Ribi genes after inhibition of the nitrogen-sensitive TORC1 pathway and Dot6 responsible for repression after inhibition of the carbon-sensitive protein kinase A signaling pathway. Consistently, Dot6 and Tod6 are required for efficient repression of Ribi gene repression immediately after nutrient deprivation and for successful adaptation to nutrient limitation. Thus, these results establish Dot6/Tod6 as a direct link between nutrient availability, Ribi gene regulation, and growth control.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Repressoras/metabolismo , Ribossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Regulon , Proteínas Repressoras/genética , Ribossomos/genética , Saccharomyces cerevisiae/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Inanição , Fatores de Transcrição/genética
4.
PLoS Genet ; 5(4): e1000449, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19360118

RESUMO

Modern computational methods are revealing putative transcription-factor (TF) binding sites at an extraordinary rate. However, the major challenge in studying transcriptional networks is to map these regulatory element predictions to the protein transcription factors that bind them. We have developed a microarray-based profiling of phage-display selection (MaPS) strategy that allows rapid and global survey of an organism's proteome for sequence-specific interactions with such putative DNA regulatory elements. Application to a variety of known yeast TF binding sites successfully identified the cognate TF from the background of a complex whole-proteome library. These factors contain DNA-binding domains from diverse families, including Myb, TEA, MADS box, and C2H2 zinc-finger. Using MaPS, we identified Dot6 as a trans-active partner of the long-predicted orphan yeast element Polymerase A & C (PAC). MaPS technology should enable rapid and proteome-scale study of bi-molecular interactions within transcriptional networks.


Assuntos
Bacteriófagos/genética , DNA/metabolismo , Proteínas Fúngicas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Fatores de Transcrição/genética , Leveduras/metabolismo , Sítios de Ligação , DNA/química , DNA/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Biblioteca Gênica , Ligação Proteica , Estrutura Terciária de Proteína , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Leveduras/química , Leveduras/genética
5.
Mol Syst Biol ; 5: 245, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19225458

RESUMO

Addition of glucose to yeast cells increases their growth rate and results in a massive restructuring of their transcriptional output. We have used microarray analysis in conjunction with conditional mutations to obtain a systems view of the signaling network responsible for glucose-induced transcriptional changes. We found that several well-studied signaling pathways-such as Snf1 and Rgt-are responsible for specialized but limited responses to glucose. However, 90% of the glucose-induced changes can be recapitulated by the activation of protein kinase A (PKA) or by the induction of PKB (Sch9). Blocking signaling through Sch9 does not interfere with the glucose response, whereas blocking signaling through PKA does. We conclude that both Sch9 and PKA regulate a massive, nutrient-responsive transcriptional program promoting growth, but that they do so in response to different nutritional inputs. Moreover, activating PKA completely recapitulates the transcriptional growth program in the absence of any increase in growth or metabolism, demonstrating that activation of the growth program results solely from the cell's perception of its nutritional status.


Assuntos
Regulação Fúngica da Expressão Gênica , Glucose/fisiologia , Transdução de Sinais , Transcrição Gênica , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Perfilação da Expressão Gênica , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Leveduras
6.
Adv Wound Care (New Rochelle) ; 2(7): 389-399, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24527355

RESUMO

SIGNIFICANCE: The incidence, cost, morbidity, and mortality associated with non-healing of chronic skin wounds are dramatic. With the increasing numbers of people with obesity, chronic medical conditions, and an increasing life expectancy, the healthcare cost of non-healing ulcers has recently been estimated at $25 billion annually in the United States. The role played by bacterial biofilm in chronic wounds has been emphasized in recent years, particularly in the context of the prolongation of the inflammatory phase of repair. RECENT ADVANCES: Rapid high-throughput genomic approaches have revolutionized the ability to identify and quantify microbial organisms from wounds. Defining bacterial genomes and using genetic approaches to knock out specific bacterial functions, then studying bacterial survival on cutaneous wounds is a promising strategy for understanding which genes are essential for pathogenicity. CRITICAL ISSUES: When an animal sustains a cutaneous wound, understanding mechanisms involved in adaptations by bacteria and adaptations by the host in the struggle for survival is central to development of interventions that favor the host. FUTURE DIRECTIONS: Characterization of microbiomes of clinically well characterized chronic human wounds is now under way. The use of in vivo models of biofilm-infected cutaneous wounds will permit the study of the mechanisms needed for biofilm formation, persistence, and potential synergistic interactions among bacteria. A more complete understanding of bacterial survival mechanisms and how microbes influence host repair mechanisms are likely to provide targets for chronic wound therapy.

7.
Curr Pharm Biotechnol ; 13(15): 2712-20, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23072392

RESUMO

A number of transcriptional control elements are activated when Saccharomyces cerevisiae cells are submitted to various stress conditions, including high hydrostatic pressure (HHP). Exposure of Saccharomyces cerevisiae cells to HHP results in global transcriptional reprogramming, similar to that observed under other industrial stresses, such as temperature, ethanol and oxidative stresses. Moreover, treatment with a mild hydrostatic pressure renders yeast cells multistress tolerant. In order to identify transcriptional factors involved in coordinating response to high hydrostatic pressure, we performed a time series microarray expression analysis on a wild S. cerevisiae strain exposed to 50 MPa for 30 min followed by recovery at atmospheric pressure (0.1 MPa) for 5, 10 and 15 min. We identified transcription factors and corresponding DNA and RNA motifs targeted in response to hydrostatic pressure. Moreover, we observed that different motif elements are present in the promoters of induced or repressed genes during HHP treatment. Overall, as we have already published, mild HHP treatment to wild yeast cells provides multiple protection mechanisms, and this study suggests that the TFs and motifs identified as responding to HHP may be informative for a wide range of other biotechnological and industrial applications, such as fermentation, that may utilize HHP treatment.


Assuntos
Adaptação Fisiológica/genética , Proteínas Fúngicas/genética , Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética , Fatores de Transcrição/genética , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Pressão Hidrostática , Análise em Microsséries , RNA Fúngico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA