Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Neuroinflammation ; 20(1): 176, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507711

RESUMO

Systemic inflammation triggers protective as well as pro-inflammatory responses in the brain based on neuronal and/or cytokine signaling, and it associates with acutely and protractedly disrupted cognition. However, the multiple mechanisms underlying the peripheral-central inflammatory signaling are still not fully characterized. We used intraperitoneal (i.p.) injection of lipopolysaccharide (LPS) in freely moving mice with chronically implanted electrodes for recording of local field potentials (LFP) and electrocorticography (ECoG) in the hippocampus and neocortex, respectively. We show here that a sudden switch in the mode of network activity occurred in both areas starting at 10-15 min after the LPS injection, simultaneously with a robust change from exploration to sickness behavior. This switch in cortical mode commenced before any elevations in pro-inflammatory cytokines IL-1ß, TNFα, CCL2 or IL-6 were detected in brain tissue. Thereafter, this mode dominated cortical activity for the recording period of 3 h, except for a partial and transient recovery around 40 min post-LPS. These effects were closely paralleled by changes in ECoG spectral entropy. Continuous recordings for up to 72 h showed a protracted attenuation in hippocampal activity, while neocortical activity recovered after 48 h. The acute sickness behavior recovered by 72 h post-LPS. Notably, urethane (1.3 mg/kg) administered prior to LPS blocked the early effect of LPS on cortical activity. However, experiments under urethane anesthesia which were started 24 h post-LPS (with neuroinflammation fully developed before application of urethane) showed that both theta-supratheta and fast gamma CA1 activity were reduced, DG delta activity was increased, and sharp-wave ripples were abolished. Finally, we observed that experimental compensation of inflammation-induced hypothermia 24-48 h post-LPS promoted seizures and status epilepticus; and that LPS decreased the threshold of kainate-provoked seizures beyond the duration of acute sickness behavior indicating post-acute inflammatory hyperexcitability. Taken together, the strikingly fast development and initial independence of brain cytokines of the LPS-induced cortical mode, its spectral characteristics and simultaneity in hippocampus and neocortex, as well as inhibition by pre-applied urethane, strongly suggest that the underlying mechanisms are based on activation of the afferent vagus nerve and its mainly cholinergic ascending projections to higher brain areas.


Assuntos
Citocinas , Comportamento de Doença , Camundongos , Animais , Citocinas/metabolismo , Lipopolissacarídeos/toxicidade , Encéfalo/metabolismo , Inflamação/induzido quimicamente , Convulsões , Uretana/farmacologia
2.
Eur J Neurosci ; 50(2): 1911-1919, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30687973

RESUMO

Spectrotemporally complex sounds carry important information for acoustic communication. Among the important features of these sounds is the temporal duration. An event-related potential called mismatch negativity indexes auditory change detection in humans. An analogous response (mismatch response) has been found to duration changes in speech sounds in rats but not yet in mice. We addressed whether mice show this response, and, if elicited, whether this response is functionally analogous to mismatch negativity or whether adaptation-based models suffice to explain them. Auditory-evoked potentials were epidurally recorded above the mice auditory cortex. The differential response to the changes in a repeated human speech sound /a/ was elicited 53-259 ms post-change (oddball condition). The differential response was observable to the largest duration change (from 200 to 110 ms). Any smaller (from 200 to 120-180 ms at 10 ms steps) duration changes did elicit an observable response. The response to the largest duration change did not robustly differ in amplitude from the response to the change-inducing sound presented without its repetitive background (equiprobable condition). The findings suggest that adaptation may suffice to explain responses to duration changes in spectrotemporally complex sounds in anaesthetized mice. The results pave way for development of a variety of murine models of acoustic communication.


Assuntos
Anestesia , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Anestésicos Intravenosos/administração & dosagem , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Tempo , Uretana/administração & dosagem
3.
Cereb Cortex ; 23(5): 1148-58, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22581851

RESUMO

Amyloid precursor protein transgenic mice modeling Alzheimer's disease display frequent occurrence of seizures peaking at an age when amyloid plaques start to form in the cortex and hippocampus. We tested the hypothesis that numerous reported interactions of amyloid-ß with cell surface molecules result in altered excitation-inhibition balance in brain-wide neural networks, eventually leading to epileptogenesis. We examined electroencephalograms (EEGs) and auditory-evoked potentials (AEPs) in freely moving 4-month-old APPswe/PS1dE9 (APdE9) and wild-type (WT) control mice in the hippocampus, cerebral cortex, and thalamus during movement, quiet waking, non-rapid eye movement sleep, and rapid eye movement (REM) sleep. Cortical EEG power was higher in APdE9 mice than in WT mice over a broad frequency range (5-100 Hz) and during all 4 behavioral states. Thalamic EEG power was also increased but in a narrower range (10-80 Hz). Furthermore, APdE9 mice displayed augmented cortical and thalamic AEPs. While power and theta-gamma modulation were preserved in the APdE9 hippocampus, REM sleep-related phase shift of theta-gamma modulation was altered. Our data suggest that at the early stage of amyloid pathology, cortical principal cells become hyperexcitable and via extensive cortico-thalamic connection drive thalamic cells. Minor hippocampal changes are most likely secondary to abnormal entorhinal input.


Assuntos
Doença de Alzheimer/complicações , Doença de Alzheimer/fisiopatologia , Córtex Cerebral/fisiopatologia , Epilepsia/etiologia , Epilepsia/fisiopatologia , Rede Nervosa/fisiopatologia , Tálamo/fisiologia , Precursor de Proteína beta-Amiloide/genética , Animais , Mapeamento Encefálico , Feminino , Camundongos , Camundongos Transgênicos , Vias Neurais/fisiopatologia
4.
Hear Res ; 399: 107814, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672403

RESUMO

Mismatch negativity (MMN), which is an electrophysiological response demonstrated in humans and animals, reflects memory-based deviance detection in a series of sounds. However, only a few studies on rodents have used control conditions that were sufficient in eliminating confounding factors that could also explain differential responses to deviant sounds. Furthermore, it is unclear if change detection occurs similarly for sinusoidal and complex sounds. In this study, we investigated frequency change detection in urethane-anesthetized rats by recording local-field potentials from the dura above the auditory cortex. We studied change detection in sinusoidal and complex sounds in a series of experiments, controlling for sound frequency, probability, and pattern in a series of sounds. For sinusoidal sounds, the MMN controlled for frequency, adaptation, and pattern, was elicited at approximately 200 ms onset latency. For complex sounds, the MMN controlled for frequency and adaptation, was elicited at 60 ms onset latency. Sound frequency affected the differential responses. MMN amplitude was larger for the sinusoidal sounds than for the complex sounds. These findings indicate the importance of controlling for sound frequency and stimulus probabilities, which have not been fully controlled for in most previous animal and human studies. Future studies should confirm the preference for sinusoidal sounds over complex sounds in rats.


Assuntos
Percepção Auditiva , Potenciais Evocados Auditivos , Som , Estimulação Acústica , Animais , Eletroencefalografia , Ratos , Uretana
5.
Neurobiol Aging ; 96: 79-86, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32950781

RESUMO

In recent years, aberrant neural oscillations in various cortical areas have emerged as a common physiological hallmark across mouse models of amyloid pathology and patients with Alzheimer's disease. However, much less is known about the underlying effect of amyloid pathology on single cell activity. Here, we used high-density silicon probe recordings from frontal cortex area of 9-month-old APP/PS1 mice to show that local field potential power in the theta and beta band is increased in transgenic animals, whereas single-cell firing rates, specifically of putative pyramidal cells, are significantly reduced. At the same time, these sparsely firing pyramidal cells phase-lock their spiking activity more strongly to the ongoing theta and beta rhythms. Furthermore, we demonstrated that the antiepileptic drug, levetiracetam, counteracts these effects by increasing pyramidal cell firing rates in APP/PS1 mice and uncoupling pyramidal cells and interneurons. Overall, our results highlight reduced firing rates of cortical pyramidal cells as a pathophysiological phenotype in APP/PS1 mice and indicate a potentially beneficial effect of acute levetiracetam treatment.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/fisiopatologia , Amiloidose/tratamento farmacológico , Amiloidose/fisiopatologia , Lobo Frontal/citologia , Levetiracetam/farmacologia , Células Piramidais/fisiologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Levetiracetam/uso terapêutico , Masculino , Camundongos Transgênicos , Presenilina-1/genética
6.
Front Neurol ; 10: 1151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781019

RESUMO

Epileptic activity without visible convulsions is common in Alzheimer's disease (AD) and may contribute adversely to the disease progress and symptoms. Transgenic mice with amyloid plaque pathology also display epileptic seizures, but those are too infrequent to assess the effect of anti-epileptic treatments. Besides spontaneous seizures, these mice also display frequent epileptic spiking in epidural EEG recordings, and these have provided a means to test potential drug treatment to AD-related epilepsy. However, the origin of EEG spikes in transgenic AD model mice has remained elusive, which makes it difficult to relate electrophysiology with underlying pathology at the cellular and molecular level. Using multiple cortical and subcortical electrodes in freely moving APP/PS1 transgenic mice and their wild-type littermates, we identified several types of epileptic spikes among over 15 800 spikes visible with cortical screw electrodes based on their source localization. Cortical spikes associated with muscle twitches, cortico-hippocampal spikes, and spindle and fast-spindle associated spikes were present equally often in both APP/PS1 and wild-type mice, whereas pure cortical spikes were slightly more common in APP/PS1 mice. In contrast, spike-wave discharges, cortico-hippocampal spikes with after hyperpolarization and giant spikes were seen almost exclusively in APP/PS1 mice but only in a subset of them. Interestingly, different subtypes of spikes responded differently to anti-epileptic drugs ethosuximide and levetiracetam. From the translational point most relevant may be the giant spikes generated in the hippocampus that reached an amplitude up to ± 5 mV in the hippocampal channel. As in AD patients, they occurred exclusively during sleep. Further, we could demonstrate that a high number of giant spikes in APP/PS1 mice predicts seizures. These data show that by only adding a pair of hippocampal deep electrodes and EMG to routine cortical epidural screw electrodes and by taking into account underlying cortical oscillations, one can drastically refine the analysis of cortical spike data. This new approach provides a powerful tool to preclinical testing of potential new treatment options for AD related epilepsy.

7.
J Cereb Blood Flow Metab ; 39(10): 1949-1960, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-29690796

RESUMO

We report spontaneous hemodynamic activity termed "Spontaneous BOLD Waves" (SBWs) detected by BOLD fMRI in Sprague-Dawley rats under medetomidine anesthesia. These SBWs, which lasted several minutes, were observed in cortex, thalamus and hippocampus. The SBWs' correlates were undetectable in electrophysiological recordings, suggesting an exclusive gliovascular phenomenon dissociated from neuronal activity. SBWs were insensitive to the NMDA receptors antagonist MK-801 but were inhibited by the α1-adrenoceptor blocker prazosin. Since medetomidine is a potent agonist of α2 adrenoceptors, we suggested that imbalance in α1/α2 receptor-mediated signalling pathways alter the vascular reactivity leading to SBWs. The frequency of SBWs increased with intensity of mechanical lung ventilation despite the stable pH levels. In summary, we present a novel type of propagating vascular brain activity without easily detectable underlying neuronal activity, which can be utilized to study the mechanisms of vascular reactivity in functional and pharmacological MRI and has practical implications for designing fMRI experiments in anesthetized animals.


Assuntos
Encéfalo/irrigação sanguínea , Hemodinâmica , Animais , Encéfalo/efeitos dos fármacos , Mapeamento Encefálico , Hemodinâmica/efeitos dos fármacos , Hipnóticos e Sedativos/farmacologia , Imageamento por Ressonância Magnética , Masculino , Medetomidina/farmacologia , Oxigênio/sangue , Ratos , Ratos Sprague-Dawley
8.
Neurobiol Aging ; 71: 127-141, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30138766

RESUMO

Amyloid plaque-forming transgenic mice display neuronal hyperexcitability, epilepsy, and sudden deaths in early adulthood. However, it is unknown whether hyperexcitability persists until middle ages when memory impairment manifests. We recorded multichannel video electroencephalography (EEG), local field potentials, and auditory evoked potentials in transgenic mice carrying mutated human amyloid precursor protein (APP) and presenilin-1 (PS1) genes and wild-type littermates at 14-16 months and compared the results with data we have earlier collected from 4-month-old mice. Furthermore, we monitored acoustic startle responses in other APP/PS1 and wild-type mice from 3 to 11 months of age. Independent of the age APP/PS1 mice demonstrated increased cortical power at 8-60 Hz. They also displayed over 5-fold increase in the occurrence of spike-wave discharges and augmented auditory evoked potentials compared with nontransgenic littermates. In contrast to evoked potentials, APP/PS1 mice showed normalization of acoustic startle responses with aging. Increased cortical power and spike-wave discharges provide powerful new biomarkers to monitor progression of amyloid pathology in preclinical intervention studies.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Ritmo beta , Córtex Cerebral/fisiologia , Excitabilidade Cortical , Presenilina-1/genética , Animais , Ondas Encefálicas , Potenciais Evocados Auditivos , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Reflexo de Sobressalto
9.
Sci Rep ; 8(1): 3027, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29445171

RESUMO

In humans, automatic change detection is reflected by an electrical brain response called mismatch negativity (MMN). Mismatch response is also elicited in mice, but it is unclear to what extent it is functionally similar to human MMN. We investigated this possible similarity by recording local field potentials from the auditory cortex of anesthetized mice. First, we tested whether the response to stimulus changes reflected the detection of regularity violations or adaptation to standard stimuli. Responses obtained from an oddball condition, where occasional changes in frequency were presented amongst of a standard sound, were compared to responses obtained from a control condition, where no regularities existed. To test whether the differential response to the deviant sounds in the oddball condition is dependent on sensory memory, responses from the oddball condition using 375 ms and 600 ms inter-stimulus intervals (ISI) were compared. We found a differential response to deviant sounds which was larger with the shorter than the longer ISI. Furthermore, the oddball deviant sound elicited larger response than the same sound in the control condition. These results demonstrate that the mismatch response in mice reflects detection of regularity violations and sensory memory function, as the human MMN.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Memória/fisiologia , Estimulação Acústica/métodos , Anestesia/métodos , Animais , Córtex Auditivo/patologia , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tempo de Reação/fisiologia , Som
10.
J Alzheimers Dis ; 51(1): 21-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26836173

RESUMO

Alzheimer's disease has been shown to affect vision in human patients and animal models. This may pose the risk of bias in behavior studies and therefore requires comprehensive investigation. We recorded electroretinography (ERG) under isoflurane anesthesia and visual evoked potentials (VEP) in awake amyloid expressing AßPPswe/PS1dE9 (AßPP/PS1) and wild-type littermate mice at a symptomatic age. The VEPs in response to patterned stimuli were normal in AßPP/PS1 mice. They also showed normal ERG amplitude but slightly shortened ERG latency in dark-adapted conditions. Our results indicate subtle changes in visual processing in aged male AßPP/PS1 mice specifically at a retinal level.


Assuntos
Doença de Alzheimer/fisiopatologia , Potenciais Evocados Visuais/fisiologia , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Sensibilidades de Contraste/genética , Modelos Animais de Doenças , Eletroencefalografia , Eletrorretinografia , Potenciais Evocados Visuais/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Estimulação Luminosa , Presenilina-1/genética , Tempo de Reação/genética
11.
Sci Rep ; 6: 38904, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27996015

RESUMO

Experience-induced changes in the functioning of the auditory cortex are prominent in early life, especially during a critical period. Although auditory perceptual learning takes place automatically during this critical period, it is thought to require active training in later life. Previous studies demonstrated rapid changes in single-cell responses of anesthetized adult animals while exposed to sounds presented in a statistical learning paradigm. However, whether passive exposure to sounds can form long-term memory representations remains to be demonstrated. To investigate this issue, we first exposed adult rats to human speech sounds for 3 consecutive days, 12 h/d. Two groups of rats exposed to either spectrotemporal or tonal changes in speech sounds served as controls for each other. Then, electrophysiological brain responses from the auditory cortex were recorded to the same stimuli. In both the exposure and test phase statistical learning paradigm, was applied. The exposure effect was found for the spectrotemporal sounds, but not for the tonal sounds. Only the animals exposed to spectrotemporal sounds differentiated subtle changes in these stimuli as indexed by the mismatch negativity response. The results point to the occurrence of long-term memory traces for the speech sounds due to passive exposure in adult animals.


Assuntos
Córtex Auditivo/fisiologia , Potenciação de Longa Duração/fisiologia , Memória/fisiologia , Som , Fala , Animais , Masculino , Ratos , Ratos Wistar
12.
PLoS One ; 11(5): e0155343, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27168145

RESUMO

Sleep is essential for nervous system functioning and sleep disorders are associated with several neurodegenerative diseases. However, the macroscale connectivity changes in brain networking during different sleep states are poorly understood. One of the hindering factors is the difficulty to combine functional connectivity investigation methods with spontaneously sleeping animals, which prevents the use of numerous preclinical animal models. Recent studies, however, have implicated that urethane anesthesia can uniquely induce different sleep-like brain states, resembling rapid eye movement (REM) and non-REM (NREM) sleep, in rodents. Therefore, the aim of this study was to assess changes in global connectivity and topology between sleep-like states in urethane anesthetized rats, using blood oxygenation level dependent (BOLD) functional magnetic resonance imaging. We detected significant changes in corticocortical (increased in NREM-like state) and corticothalamic connectivity (increased in REM-like state). Additionally, in graph analysis the modularity, the measure of functional integration in the brain, was higher in NREM-like state than in REM-like state, indicating a decrease in arousal level, as in normal sleep. The fMRI findings were supported by the supplementary electrophysiological measurements. Taken together, our results show that macroscale functional connectivity changes between sleep states can be detected robustly with resting-state fMRI in urethane anesthetized rats. Our findings pave the way for studies in animal models of neurodegenerative diseases where sleep abnormalities are often one of the first markers for the disorder development.


Assuntos
Anestésicos Intravenosos , Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Sono REM/fisiologia , Tálamo/fisiologia , Uretana , Animais , Nível de Alerta/fisiologia , Córtex Cerebral/anatomia & histologia , Eletroencefalografia , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/anatomia & histologia , Ratos , Ratos Wistar , Tálamo/anatomia & histologia , Vigília/fisiologia
13.
Int J Psychophysiol ; 96(3): 134-40, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25911953

RESUMO

The human brain can automatically detect auditory changes, as indexed by the mismatch negativity of event-related potentials. The mechanisms that underlie this response are poorly understood. We recorded primary auditory cortical and hippocampal (dentate gyrus, CA1) local-field potentials to serial tones in urethane-anesthetized rats. In an oddball condition, a rare (deviant) tone (p=0.11) randomly replaced a repeated (standard) tone. The deviant tone was either lower (2200, 2700, 3200, 3700Hz) or higher (4300, 4800, 5300, 5800Hz) in frequency than the standard tone (4000Hz). In an equiprobability control condition, all nine tones were presented at random (p=0.11). Differential responses to deviant tones relative to the standard tone were found in the auditory cortex and the dentate gyrus but not in CA1. Only in the dentate gyrus, the responses were found to be standard- (i.e., oddball condition-) specific. In the auditory cortex, the sound frequencies themselves sufficed to explain their generation. These findings tentatively suggest dissociation among non-contextual afferent, contextual afferent and auditory change detection processes. Most importantly, they remind us about the importance of strict control of physical sound features in mismatch negativity studies in animals.


Assuntos
Anestésicos Intravenosos/farmacologia , Córtex Auditivo/efeitos dos fármacos , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Uretana/farmacologia , Estimulação Acústica , Análise de Variância , Animais , Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos/fisiologia , Hipocampo/fisiologia , Psicoacústica , Ratos , Ratos Sprague-Dawley
14.
PLoS One ; 9(12): e113317, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25469887

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder that primarily affects the medium-size GABAergic neurons of striatum. The R6/2 mouse line is one of the most widely used animal models of HD. Previously the hallmarks of HD-related pathology have been detected in photoreceptors and interneurons of R6/2 mouse retina. Here we aimed to explore the survival of retinal ganglion cells (RGCs) and functional integrity of distinct retinal cell populations in R6/2 mice. The pattern electroretinography (PERG) signal was lost at the age of 8 weeks in R6/2 mice in contrast to the situation in wild-type (WT) littermates. This defect may be attributable to a major reduction in photopic ERG responses in R6/2 mice which was more evident in b- than a-wave amplitudes. At the age of 4 weeks R6/2 mice had predominantly the soluble form of mutant huntingtin protein (mHtt) in the RGC layer cells, whereas the aggregated form of mHtt was found in the majority of those cells from the 12-week-old R6/2 mice and onwards. Retinal astrocytes did not contain mHtt deposits. The total numbers of RGC layer cells, retinal astrocytes as well as optic nerve axons did not differ between 18-week-old R6/2 mice and their WT controls. Our data indicate that mHtt deposition does not cause RGC degeneration or retinal astrocyte loss in R6/2 mice even at a late stage of HD-related pathology. However, due to functional deficits in the rod- and cone-pathways, the R6/2 mice suffer progressive deficits in visual capabilities starting as early as 4 weeks; at 8 weeks there is severe impairment. This should be taken into account in any behavioral testing conducted in R6/2 mice.


Assuntos
Doença de Huntington/fisiopatologia , Retina/fisiopatologia , Células Ganglionares da Retina/metabolismo , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Eletrorretinografia , Feminino , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Retina/citologia , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Células Ganglionares da Retina/patologia
15.
PLoS One ; 8(1): e54624, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23355884

RESUMO

Any change in the invariant aspects of the auditory environment is of potential importance. The human brain preattentively or automatically detects such changes. The mismatch negativity (MMN) of event-related potentials (ERPs) reflects this initial stage of auditory change detection. The origin of MMN is held to be cortical. The hippocampus is associated with a later generated P3a of ERPs reflecting involuntarily attention switches towards auditory changes that are high in magnitude. The evidence for this cortico-hippocampal dichotomy is scarce, however. To shed further light on this issue, auditory cortical and hippocampal-system (CA1, dentate gyrus, subiculum) local-field potentials were recorded in urethane-anesthetized rats. A rare tone in duration (deviant) was interspersed with a repeated tone (standard). Two standard-to-standard (SSI) and standard-to-deviant (SDI) intervals (200 ms vs. 500 ms) were applied in different combinations to vary the observability of responses resembling MMN (mismatch responses). Mismatch responses were observed at 51.5-89 ms with the 500-ms SSI coupled with the 200-ms SDI but not with the three remaining combinations. Most importantly, the responses appeared in both the auditory-cortical and hippocampal locations. The findings suggest that the hippocampus may play a role in (cortical) manifestation of MMN.


Assuntos
Anestésicos Intravenosos/farmacologia , Córtex Auditivo/fisiologia , Potenciais Evocados Auditivos/efeitos dos fármacos , Hipocampo/fisiologia , Uretana/farmacologia , Animais , Potenciais Evocados Auditivos/fisiologia , Humanos , Ratos , Ratos Sprague-Dawley
16.
F1000Res ; 2: 182, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25132958

RESUMO

An auditory oddball paradigm in humans generates a long-duration cortical negative potential, often referred to as mismatch negativity. Similar negativity has been documented in monkeys and cats, but it is controversial whether mismatch negativity also exists in awake rodents. To this end, we recorded cortical and hippocampal evoked responses in rats during alert immobility under a typical passive oddball paradigm that yields mismatch negativity in humans. The standard stimulus was a 9 kHz tone and the deviant either 7 or 11 kHz tone in the first condition. We found no evidence of a sustained potential shift when comparing evoked responses to standard and deviant stimuli. Instead, we found repetition-induced attenuation of the P60 component of the combined evoked response in the cortex, but not in the hippocampus. The attenuation extended over three days of recording and disappeared after 20 intervening days of rest. Reversal of the standard and deviant tones resulted is a robust enhancement of the N40 component not only in the cortex but also in the hippocampus. Responses to standard and deviant stimuli were affected similarly. Finally, we tested the effect of scopolamine in this paradigm. Scopolamine attenuated cortical N40 and P60 as well as hippocampal P60 components, but had no specific effect on the deviant response. We conclude that in an oddball paradigm the rat demonstrates repetition-induced attenuation of mid-latency responses, which resembles attenuation of the N1-component of human auditory evoked potential, but no mismatch negativity.

17.
PLoS One ; 7(11): e48506, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133638

RESUMO

Several experiments have demonstrated an intimate relationship between hippocampal theta rhythm (4-12 Hz) and memory. Lesioning the medial septum or fimbria-fornix, a fiber track connecting the hippocampus and the medial septum, abolishes the theta rhythm and results in a severe impairment in declarative memory. To assess whether there is a causal relationship between hippocampal theta and memory formation we investigated whether restoration of hippocampal theta by electrical stimulation during the encoding phase also restores fimbria-fornix lesion induced memory deficit in rats in the fear conditioning paradigm. Male Wistar rats underwent sham or fimbria-fornix lesion operation. Stimulation electrodes were implanted in the ventral hippocampal commissure and recording electrodes in the septal hippocampus. Artificial theta stimulation of 8 Hz was delivered during 3-min free exploration of the test cage in half of the rats before aversive conditioning with three foot shocks during 2 min. Memory was assessed by total freezing time in the same environment 24 h and 28 h after fear conditioning, and in an intervening test session in a different context. As expected, fimbria-fornix lesion impaired fear memory and dramatically attenuated hippocampal theta power. Artificial theta stimulation produced continuous theta oscillations that were almost similar to endogenous theta rhythm in amplitude and frequency. However, contrary to our predictions, artificial theta stimulation impaired conditioned fear response in both sham and fimbria-fornix lesioned animals. These data suggest that restoration of theta oscillation per se is not sufficient to support memory encoding after fimbria-fornix lesion and that universal theta oscillation in the hippocampus with a fixed frequency may actually impair memory.


Assuntos
Medo , Memória/fisiologia , Ritmo Teta/fisiologia , Tonsila do Cerebelo/fisiologia , Animais , Mapeamento Encefálico/métodos , Condicionamento Psicológico , Eletrodos , Eletroencefalografia/métodos , Hipocampo/fisiologia , Imuno-Histoquímica/métodos , Masculino , Aprendizagem em Labirinto , Oscilometria/métodos , Ratos , Ratos Wistar , Fatores de Tempo
18.
PLoS One ; 6(9): e24208, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21915297

RESUMO

Any occasional changes in the acoustic environment are of potential importance for survival. In humans, the preattentive detection of such changes generates the mismatch negativity (MMN) component of event-related brain potentials. MMN is elicited to rare changes ('deviants') in a series of otherwise regularly repeating stimuli ('standards'). Deviant stimuli are detected on the basis of a neural comparison process between the input from the current stimulus and the sensory memory trace of the standard stimuli. It is, however, unclear to what extent animals show a similar comparison process in response to auditory changes. To resolve this issue, epidural potentials were recorded above the primary auditory cortex of urethane-anesthetized rats. In an oddball condition, tone frequency was used to differentiate deviants interspersed randomly among a standard tone. Mismatch responses were observed at 60-100 ms after stimulus onset for frequency increases of 5% and 12.5% but not for similarly descending deviants. The response diminished when the silent inter-stimulus interval was increased from 375 ms to 600 ms for +5% deviants and from 600 ms to 1000 ms for +12.5% deviants. In comparison to the oddball condition the response also diminished in a control condition in which no repetitive standards were presented (equiprobable condition). These findings suggest that the rat mismatch response is similar to the human MMN and indicate that anesthetized rats provide a valuable model for studies of central auditory processing.


Assuntos
Potenciais Evocados Auditivos/fisiologia , Potenciais Evocados/fisiologia , Memória/fisiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA