Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Molecules ; 29(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38731624

RESUMO

Gerty T. and Carl F. Cori discovered, during research on the metabolism of sugars in organisms, the important role of the phosphate ester of a simple sugar. Glucose molecules are released from glycogen-the glucose stored in the liver-in the presence of phosphates and enter the blood as α-D-glucose-1-phosphate (Glc-1PH2). Currently, the crystal structure of three phosphates, Glc-1PNa2·3.5·H2O, Glc-1PK2·2H2O, and Glc-1PHK, is known. Research has shown that reactions of Glc-1PH2 with carbonates produce new complexes with ammonium ions [Glc-1P(NH4)2·3H2O] and mixed complexes: potassium-sodium and ammonium-sodium [Glc-1P(X)1.5Na0.5·4H2O; X = K or NH4]. The crystallization of dicationic complexes has been carried out in aqueous systems containing equimolar amounts of cations (1:1; X-Na). It was found that the first fractions of crystalline complexes always had cations in the ratio 3/2:1/2. The second batch of crystals obtained from the remaining mother liquid consisted either of the previously studied Na+, K+ or NH4+ complexes, or it was a new sodium hydrate-Glc-1PNa2·5·H2O. The isolated ammonium-potassium complex shows an isomorphic cation substitution and a completely unique composition: Glc-1PH(NH4)xK1-x (x = 0.67). The Glc-1P2- ligand has chelating fragments and/or bridging atoms, and complexes containing one type of cation show different modes of coordinating oxygen atoms with cations. However, in the case of the potassium-sodium and ammonium-sodium structures, high structural similarities are observed. The 1D and 2D NMR spectra showed that the conformation of Glc-1P2- is rigid in solution as in the solid state, where only rotations of the phosphate group around the C-O-P bonds are observed.

2.
Angew Chem Int Ed Engl ; 63(9): e202316243, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38198178

RESUMO

A saddle-shaped π-extended zinc porphyrin containing a peripheral pyridyl ligand undergoes quantitative self-assembly into a cyclic trimer. The trimer has a prismatic structure with negatively curved side walls, which promote the formation of supramolecular organic frameworks stabilized by dispersion interactions. The first framework type, UWr-1, has the npo topology, with a hexagonal structure analogous to the Schwartz H triply periodic minimal surface. Co-crystallization of the trimer with either C60 and C70 produces the isomorphous cubic UWr-2 and UWr-3 phases, characterized by the ctn network topology and a structural relationship to the Fischer-Koch minimal surface S. All three phases contain complex labyrinths of solvent-filled channels, corresponding to very large probe-accessible volumes (68 % to 76 %). The UWr-2 network could be partly desolvated while retaining its long range dimensional order, indicating remarkable strength of the dispersion interactions in the crystal. A theoretical analysis of noncovalent interactions shows the role of geometrical matching between the negatively curved porphyrin units and positively curved fullerenes.

3.
Inorg Chem ; 62(6): 2913-2923, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36716237

RESUMO

Mono-substituted cage-like silsesquioxanes of the T8-type can play the role of potential ligands in the coordination chemistry. In this paper, we report on imine derivatives as ligands for samarium, terbium, and erbium cations and discuss their efficient synthesis, crystal structures, and magnetic and optical properties. X-ray analysis of the lanthanide coordination entities [MCl3(POSS)3]·2THF [M = Er3+ (3), Tb3+ (4), Sm3+ (5)] showed that all three compounds crystallize in the same space group with similar lattice parameters. All compounds contain an octahedrally coordinated metal atom, and additionally, 3 and 5 structures are strictly isomorphous. However, surprisingly, there are two different molecules in the crystal structure of the terbium coordination entity 4, monomer (sof 65%) and dimer (sof 35%), with one and two metal centers. Absorption measurements of the investigated materials recorded at 300 K showed that regardless of the lanthanide involved, their energy band gap equals 2.7 eV. Moreover, the analogues containing Tb3+ and Sm3+ exhibit luminescence typical of these rare earth ions in the visible and infrared spectral range, while the compound with Er3+ does not generate any emission. Direct current variable-temperature magnetic susceptibility measurements on polycrystalline samples of 3-5 were performed between 1.8 and 300 K. The magnetic properties of 3 and 4 are dominated by the crystal field effect on the Er3+ and Tb3+ ions, respectively, hiding the magnetic influence between the magnetic cations of adjacent molecules. Complex 5 exhibits a nature typical for the paramagnetism of the samarium(III) cation.

4.
Inorg Chem ; 62(5): 2197-2212, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36696546

RESUMO

In this study, a new method for the synthesis of heterometallic 3d-4f alkoxides by the direct reaction of metallic lanthanides (La, Pr, Nd, Gd) with MCl2 (M = Mn, Ni, Co) in 2-methoxyethanol was developed. The method was applied to the synthesis of the heterometallic oxo-alkoxide clusters [Ln4Mn2(µ6-O)(µ3-OR)8(HOR)xCl6] (Ln = La (1), Nd (2), Gd (3); x = 0, 2, 4); [Pr4M2(µ6-O)(µ3-OR)8(HOR)xCl6] (M = Co (4), Ni (5); x = 2, 4); and [Ln4Mn2(µ3-OH)2(µ3-OR)4(µ-OR)4(µ-Cl)2(HOR)4Cl6] (Ln = La (11) and Pr (12)). Mechanistic investigation led to the isolation of the homo- and heterometallic intermediates [Pr(µ-OR)(µ-Cl)(HOR)Cl]n (6), [Co4(µ3-OR)4(HOR)4Cl4] (7), [Ni4(µ3-OR)4(HOEt)4Cl4] (8), [Mn4(µ3-OR)4(HOR)2(HOEt)2Cl4] (9), and [Nd(HOR)4Cl][CoCl4] (10). In the presence of an external M(II) source at 1100 °C, 1-4 and 12 were selectively converted into binary metal oxide nanomaterials with trigonal or orthorhombic perovskite structures, i.e., LaMnO3, GdMnO3, NdMnO3, Pr0.9MnO3, and PrCoO3. Compound 5 decomposed into a mixture of homo- and heterometallic oxides. The method presented provides a valuable platform for the preparation of advanced heterometallic oxide materials with promising magnetic, luminescence, and/or catalytic applications.

5.
Angew Chem Int Ed Engl ; 62(38): e202309238, 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37452009

RESUMO

Diradicaloid helicenes constructed formally by non-benzenoid double π-extension of phenanthrene were synthesized by a common strategy involving double electrophilic benzannulation. Steric effects in the second benzannulation step led to considerable structural diversity among the products, yielding a symmetrical dinor[7]helicene 1 and two isomeric unsymmetrical double helicenes 2 and 3, containing a nor[5]helicene and [4]helicene fragment, respectively, in addition to a common nor[6]helicene motif. Geometries, configurational dynamics, and electronic structure of these helicenes were analyzed using solid-state structures, spectroscopic methods, and computational analyses. The open-shell character of the singlet states of these helicenes increases in the order 3<1<2, with strongly varying diradicaloid indexes and singlet-triplet gaps. Compounds 1-3 displayed narrow optical gaps of 0.79-1.25 eV, resulting in significant absorption in the near infrared (NIR) region. They also exhibit reversible redox chemistry, each of them yielding stable radical cations, radical anions, and dianions, in some cases possessing intense NIR absorptions extending beyond 2500 nm.

6.
Photosynth Res ; 154(3): 383-395, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35870060

RESUMO

Water splitting, producing of oxygen, and hydrogen molecules, is an essential reaction for clean energy resources and is one of the challenging reactions for artificial photosynthesis. The Mn4Ca cluster in photosystem II (PS-II) is responsible for water oxidation in natural photosynthesis. Due to this, water oxidation reaction by Mn coordination compounds is vital for mimicking the active core of the oxygen-evolving complex in PS-II. Here, a new dinuclear Mn(II)-semicarbohydrazone coordination compound, [Mn(HL)(µ-N3)Cl]2 (1), was synthesized and characterized by various methods. The structure of compound 1 was determined by single crystal X-ray analysis, which revealed the Mn(II) ions have distorted octahedral geometry as (MnN4OCl). This geometry is created by coordinating of oxygen and two nitrogen donor atoms from semicarbohydrazone ligand, two nitrogen atoms from azide bridges, and chloride anion. Compound 1 was used as a catalyst for electrochemical water oxidation, and the surface of the electrode after the reaction was investigated by scanning electron microscopy, energy dispersive spectrometry, and powder X-ray diffraction analyses. Linear sweep voltammetry (LSV) experiments revealed that the electrode containing 1 shows high activity for chemical water oxidation with an electrochemical overpotential as low as 377 mV. Although our findings showed that the carbon paste electrode in the presence of 1 is an efficient electrode for water oxidation, it could not withstand water oxidation catalysis under bulk electrolysis and finally converted to Mn oxide nanoparticles which were active for water oxidation along with compound 1.


Assuntos
Manganês , Água , Água/química , Manganês/química , Oxirredução , Complexo de Proteína do Fotossistema II/metabolismo , Oxigênio/química , Nitrogênio
7.
Chemistry ; 28(4): e202103480, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34713520

RESUMO

π-Extended acenaphtho[1,2-d][1,2,3]triazoles, the unsubstituted Anta-H and its di-tert-butyl derivative Dibanta-H, as well as 5,6,7,8-tetrahydro-1H-naphtho[2,3-d][1,2,3]triazole Cybta-H were obtained in concise syntheses. In the solid state, Dibanta-H forms an unprecedented hydrogen-bonded cyclic tetrad, stabilized by dispersion interactions of the bulky tBu substituents, whereas a cyclic triad was found in the crystal structure of Anta-H. These cyclic assemblies form infinite slipped stacks in the crystals. Evidence for analogous hydrogen-bonded self-assembly in solution was provided by low-temperature NMR spectroscopy and computational analyses. Kuratowski-type pentanuclear complexes [Zn5 Cl4 (Dibanta)6 ] and [Zn5 Cl4 (Cybta)6 ] were prepared from the respective triazoles. In the Dibanta complexes, the π-aromatic surfaces of the ligands extend from the edges of the tetrahedral Zn5 core, yielding an enlarged structure with significant internal molecular free volume and red-shifted fluorescence.


Assuntos
Triazóis , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Moleculares
8.
Angew Chem Int Ed Engl ; 61(38): e202207486, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-35819871

RESUMO

Tridecacyclene tetraimide, TCTI, an electron-deficient non-benzenoid nanocarbon with a C56 N4 polycyclic framework was obtained in a concise synthesis. TCTI has a non-planar structure and forms π-stacked dimers in the solid state. In solution, it undergoes eight single-electron reductions, yielding a range of negatively charged states up to an octaanion. Except for the latter species, which has a remarkably large electronic gap, the anions feature extended near-infrared absorptions, with a particularly strong band at 1692 nm observed for the dianion. A computational analysis of the TCTI anions shows that their stability originates from the combined effects of electron-deficient imide groups and the local aromaticity of reduced acenaphthylene units. The properties of TCTI make it potentially useful in electrochromic and charge storage applications.

9.
Angew Chem Int Ed Engl ; 61(18): e202200781, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35130373

RESUMO

Peripheral substitution of a π-extended porphyrin with bulky groups produces a curved chromophore with four helical stereogenic units. The curvature and stereochemistry of such porphyrins can be controlled by varying the substituents, coordinated metal ions, and apical ligands. In particular, when the achiral saddle-shaped free bases are treated with large metal ions, i.e., CdII or HgII , the resulting complexes convert to chiral propeller-like configurations. X-ray diffraction analyses show that apical coordination of a water molecule is sufficient to induce a notable bowl-like distortion of the cadmium complex, which however retains its chiral structure. For phenyl- and tolyl-substituted derivatives, the conversion is thermodynamically controlled, whereas complexes bearing bulky 4-(tert-butyl)phenyl groups transform into their chiral forms upon heating. In the latter case, the chiral Hg porphyrin was converted into the corresponding free base and other metal complexes without any loss of configurational purity, ultimately providing access to stable, enantiopure porphyrin propellers.

10.
Inorg Chem ; 60(2): 982-994, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33404233

RESUMO

For the first time, square planar Pd(II) complexes of hydrazone ligands have been investigated as the emissive components of light-emitting electrochemical cells (LECs). The neutral transition metal complex, [Pd(L1)2]·2CH3OH (1), (HL1 = (E)-N'-(phenyl(pyridin-2-yl)methylene)isonicotinhydrazide), was prepared and structurally characterized. Complex 1 displays quasireversible redox properties and is emissive at room temperature in solution with a λmax of 590 nm. As a result, it was subsequently employed as the emissive material of a single-layer LEC with configuration FTO/1/Ga/In, where studies reveal that it has a yellow color with CIE(x, y) = (0.33, 0.55), a luminance of 134 cd cm-2, and a turn-on voltage of 3.5 V. Protonation of the pendant pyridine nitrogen atoms of L1 afforded a second ionic complex [Pd(L1H)2](ClO4)2 (2) which is also emissive at room temperature with a λmax of 611 nm, resulting in an orange LEC with CIE(x, y) = (0.43, 0.53). The presence of mobile anions and cations in the second inorganic transition metal complex resulted in more efficient charge injection and transport which significantly improved the luminance and turn-on voltage of the device to 188.6 cd cm-2 and 3 V, respectively. This study establishes Pd(II) hydrazone complexes as a new class of materials whose emissive properties can be chemically tuned and provides proof-of-concept for their use in LECs, opening up exciting new avenues for potential applications in the field of solid state lighting.

11.
Molecules ; 27(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35011379

RESUMO

In alkali metal and lanthanide coordination chemistry, triphenylsiloxides seem to be unduly underappreciated ligands. This is as surprising as that such substituents play a crucial role, among others, in stabilizing rare oxidation states of lanthanide ions, taking a part of intramolecular and molecular interactions stabilizing metal-oxygen cores and many others. This paper reports the synthesis and characterization of new lithium [Li4(OSiPh3)4(THF)2] (1), and sodium [Na4(OSiPh3)4] (2) species, which were later used in obtaining novel gadolinium [Gd(OSiPh3)3(THF)3]·THF (3), and erbium [Er(OSiPh3)3(THF)3]·THF (4) configuration, it can result in res were determined for all 1-4 compounds, and in addition, IR, Raman, absorption spectroscopy studies were conducted for 3 and 4 lanthanide compounds. Furthermore, direct current (dc) variable-temperature magnetic susceptibility measurements on polycrystalline samples of 3 and 4 were carried out in the temperature range 1.8-300 K. The 3 shows behavior characteristics for the paramagnetism of the Gd3+ ion. In contrast, the magnetic properties of 4 are dominated by the crystal field effect on the Er3+ ion, masking the magnetic interaction between magnetic centers of neighboring molecules.

12.
Molecules ; 26(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33921108

RESUMO

Enterococcus faecalis is known as a significant nosocomial pathogen due to its natural resistance to many antibacterial drugs. Moreover, it was found that E. faecalis infection causes inflammation, production of reactive oxygen species, and DNA damage to human gastric cancer cells, which can induce cancer. In this study, we synthesized and tested the biological activity of a new Schiff base, 5-[(4-ethoxyphenyl)imino]methyl-N-(4-fluorophenyl)-6-methyl-2-phenylpyrimidin-4-amine (3), and compared its properties with an analogous amine (2). In the biological investigation, 3 was found to have antibacterial activity against E. faecalis 29212 and far better anticancer properties, especially against gastric adenocarcinoma (human Caucasian gastric adenocarcinoma), than 2. In addition, both derivatives were non-toxic to normal cells. It is worth mentioning that 3 could potentially inhibit cancer cell growth by inducing cell apoptosis. The results suggest that the presence of the -C=N- bond in the molecule of 3 increases its activity, indicating that 5-iminomethylpyrimidine could be a potent core for further drug discovery research.


Assuntos
Pirimidinas/química , Bases de Schiff/química , Adenocarcinoma/metabolismo , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Enterococcus faecalis/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Neoplasias Gástricas/metabolismo , Relação Estrutura-Atividade
13.
Angew Chem Int Ed Engl ; 60(41): 22496-22504, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34382721

RESUMO

A hexaradicaloid molecule with alternating Kekulé and non-Kekulé connectivities between adjacent spin centers was obtained by fusing two conjugation motifs in Chichibabin and Schlenk hydrocarbons into a coronoid structure. 1 H NMR, ESR, and SQUID experiments and computational analyses show that the system has a singlet ground state with a significant hexaradicaloid character (γ0 =0.826, γ1 =γ2 =0.773). It has multiple thermally accessible high-spin states (up to the septet), with uniform energy gaps of ca 1.0 kcal mol-1 between consecutive multiplicities. In line with its open-shell character, the coronoid has a small electronic band gap (ca. 0.8 eV) and undergoes two consecutive one-electron oxidations at low potentials, yielding cationic forms with extended near-infrared absorption. The hexaradicaloid, which combines open-shell and macrocyclic contributions to its π conjugation, is an example of a design strategy for multistate spin switches and redox-amphoteric NIR dyes.

14.
J Am Chem Soc ; 142(36): 15604-15613, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32815367

RESUMO

A hybrid nanocarbon receptor consisting of a calix[4]arene and a bent oligophenylene loop ("molecular squid"), was obtained in an efficient, scalable synthesis. The system contains an electron-rich cavity with an adaptable shape, which can serve as a host for electron deficient guests, such as diquat, 10-methylacridinium, and anthraquinone. The new receptor forms inclusion complexes in the solid state and in solution, showing a dependence of the observed binding strength on the shape of the guest species and its charge. The interaction with the methylacridinium cation in solution was interpreted in terms of a 2:1 binding model, with K11 = 5.92(7) × 103 M-1. The solid receptor is porous to gases and vapors, yielding an uptake of ca. 4 mmol/g for methanol at 293 K. In solution, the receptor shows cyan fluorescence (λmaxem = 485 nm, ΦF = 33%), which is partly quenched upon binding of guests. Methylacridinium and anthraquinone adducts show red-shifted emission in the solid state, attributable to the charge-transfer character of these inclusion complexes.

15.
J Am Chem Soc ; 142(7): 3626-3635, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31997634

RESUMO

A 139-π-electron nanographenoid radical was obtained by expanding the periphery of a naphthalimide-azacoronene hybrid with a methine bridge. The radical was isolated in the form of its σ-dimer, which was shown to possess a conformationally restricted two-layer structure both in the solid state and in solution. The dimer is cleaved into its parent radicals when exposed to ultraviolet or visible radiation in toluene solutions but is resistant to thermally induced dissociation. Under inert conditions, the radicals recombine quantitatively into the σ-dimer with observable kinetics, but they are oxidized into a ketone derivative in the presence of atmospheric oxygen. Combined structural, spectroscopic, and theoretical evidence shows that the σ-dimer contains a weak C(sp3)-C(sp3) bond, but is stabilized against thermal dissociation by a very strong dispersive interaction between the overlapping π surfaces.

16.
Chemistry ; 26(60): 13686-13697, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33463802

RESUMO

In the present research, the synthesis, spectroscopic characterization, and structural investigations of a unique ZnII complex of imine-functionalized polyhedral oligomeric silsesquioxane (POSS) is designed, and hereby described, as a catalyst for the synthesis of cyclic carbonates from epoxides and CO2. The uncommon features of the designed catalytic system is the elimination of the need for a high pressure of CO2 and the significant shortening of reaction times commonly associated with such difficult transformations like that of styrene oxide to styrene carbonate. Our studies have shown that imine-POSS is able to chelate metal ions like ZnII to form a unique coordination complex. The silsesquioxane core and the hindrance of the side arms (their steric effect) influence the construction process of the homoleptic Zn4@POSS-1 complex. The compound was characterized in solution by NMR (1H, 13C, 29Si), ESI-MS, UV/Vis spectroscopy and in the solid state by thermogravimetric/differential thermal analysis (TG-DTA), elemental analysis, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), cross-polarization magic angle spinning (CP MAS) NMR (13C, 29Si) spectroscopy, and X-ray crystallography.

17.
Chemistry ; 26(37): 8262-8266, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-31968144

RESUMO

Free base, zinc and palladium π-extended porphyrins containing fused naphthalenediamide units were employed as photosensitizers in antimicrobial photodynamic therapy (aPDT). Their efficacy, assessed by photophysical and in vitro photobiological studies on Gram-positive bacteria, was found to depend on metal coordination, showing a dramatic enhancement of photosensitizing activity for the palladium complex.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Positivas/química , Metaloporfirinas/química , Porfirinas/química , Zinco/química , Antibacterianos/química , Humanos , Metaloporfirinas/farmacologia , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas/farmacologia
18.
Inorg Chem ; 59(22): 16545-16556, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33147011

RESUMO

In this study, an efficient procedure for the synthesis of uncommon group 4-lanthanide oxo-alkoxide derivatives was developed. Heterometallic clusters with the structures [La2Ti4(µ4-O)2(µ3-OEt)2(µ-OEt)8(OEt)6(Cl)2(HOEt)2] (1), [La2Zr2(µ3-O)(µ-OEt)5(µ-Cl)(OEt)2(HOEt)4(Cl)4]n (2), [La2Hf2(µ3-O)(µ-OEt)5(µ-Cl)(OEt)2(HOEt)4(Cl)4]n (3), [Nd2Ti4(µ4-O)2(µ3-OEt)2(µ-OEt)8(OEt)6(HOEt)2(Cl)2] (4), [Nd4Zr4(µ3-O)2(µ-OEt)10(µ-Cl)4(OEt)8(HOEt)10(Cl)2] (5), and [Nd4Hf4(µ3-O)2(µ-OEt)10(µ-Cl)4(OEt)8(HOEt)10(Cl)2] (6) were synthesized via the reaction of a metallocene dichloride, Cp2M'Cl2 (where M' = Ti, Zr, and Hf), and metallic lanthanum or neodymium in the presence of excess ethanol. This procedure gave crystalline precursors with molecular stoichiometries suitable for obtaining group 4-lanthanide oxide materials. Compounds 1-6 were examined by analytical and spectroscopic techniques and single-crystal X-ray diffraction. The magnetic properties of 5 and 6 were investigated by using direct and alternating current (dc and ac) susceptibility measurements. The results indicated weak antiferromagnetic interactions between NdIII ions and a field-supported slow magnetic relaxation. Lanthanum-titanium compound 1 decomposed at 950 °C to give the perovskite compound La0.66TiO3 and small amounts of rutile TiO2. Under the same conditions, 4 decomposed to give a mixture of Nd4Ti9O24 and Nd0.66TiO3. When 4 was calcined at 1300 °C, decomposition of Nd4Ti9O24 to Nd0.66TiO3 and TiO2 was observed. Calcination of 2, 3, 5, and 6 at 950-1500 °C led to the selective formation of heterometallic La2Zr2O7, La2Hf2O7, Nd2Zr2O7, and Nd2Hf2O7 phases, respectively.

19.
Inorg Chem ; 59(12): 8108-8120, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32463686

RESUMO

In this study, simple and efficient synthetic routes to a family of uncommon group 4-zinc heterometallic alkoxides were developed. Single-source molecular precursors with the structures [Cp2TiZn(µ,η-OR)(THF)Cl2] (1), [Zr3Zn7(µ3-O)(µ3,η2-OR)3(µ-OH)3(µ,η2-OR)6(µ,η-OR)6Cl6] (2), and [Hf3Zn7(µ3-O)(µ3,η2-OR)3(µ-OH)3(µ,η2-OR)6(µ,η-OR)6Cl6] (3) were prepared via reduction of Cp2TiCl2 with metallic zinc or protonolysis of the metal-cyclopentadienyl bond in Cp2M'Cl2 (M' = Zr or Hf) in the presence of 2-methoxyethanol (ROH) and Zn(OR)2. This synthetic route enables the creation of compounds with well-defined molecular structures and therefore provides precursors suitable for obtaining group 4-zinc oxides. Precursors 1-3 were characterized by elemental analysis, nuclear magnetic resonance and infrared spectroscopies, and single-crystal X-ray diffraction. Compound 1 decomposed at 800-900 °C to give a mixture of binary metal oxides (i.e., Zn2Ti3O8, ZnTiO3, or Zn2TiO4) and common polymorphs of TiO2 and ZnO. After calcination at 1000 °C, only TiO2 and the high-temperature-stable phase Zn2TiO4 were observed. Thermolysis of compounds 2 and 3 gave mixtures of ZnO and ZrO2 or HfO2, respectively. The obtained ZnO-ZrO2 and ZnO-HfO2 mixed oxide materials have constant phase compositions across a broad temperature range and therefore are attractive host lattices for Eu3+ for applications as yellow/red double-light-emitting phosphors. It was established that Eu3+ ions were successfully introduced into the ZnO and ZrO2/HfO2 lattices. It was revealed that Eu3+ ions prefer to occupy low-symmetry sites in ZrO2/HfO2 rather than in ZnO.

20.
Molecules ; 25(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987740

RESUMO

The electron density of p-CH3CH2COC6H4-C≡CC≡C-p-C6H4COCH3CH2 has been investigated on the basis of single-crystal X-ray diffraction data collected to high resolution at 100 K and from theoretical calculations. An analysis of the X-ray data of the diyne showed interesting "liquidity" of electron distribution along the carbon chain compared to 1,2-diphenylacetylene. These findings are compatible with the results of topological analysis of Electron Localization Function (ELF), which has also revealed a larger (than expected) concentration of the electron density at the single bonds. Both methods indicate a clear π-type or "banana" character of a single bond and a significant distortion from the typical conjugated structure of the bonding in the diyne with a small contribution of cumulenic structures.


Assuntos
Alcinos/química , Modelos Moleculares , Cristalografia por Raios X , Ligação de Hidrogênio , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA