Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(23): 4428-4447.e28, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36318921

RESUMO

Human brain development is underpinned by cellular and molecular reconfigurations continuing into the third decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex gene expression and chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative analyses define the dynamic trajectories of each cell type, revealing major gene expression reconfiguration at the prenatal-to-postnatal transition in all cell types followed by continuous reconfiguration into adulthood and identifying regulatory networks guiding cellular developmental programs, states, and functions. We uncover links between expression dynamics and developmental milestones, characterize the diverse timing of when cells acquire adult-like states, and identify molecular convergence from distinct developmental origins. We further reveal cellular dynamics and their regulators implicated in neurological disorders. Finally, using this reference, we benchmark cell identities and maturation states in organoid models. Together, this captures the dynamic regulatory landscape of human cortical development.


Assuntos
Neurogênese , Organoides , Gravidez , Feminino , Humanos , Adulto , Cromatina , Córtex Pré-Frontal , Análise de Célula Única , Redes Reguladoras de Genes
2.
Nature ; 620(7975): 863-872, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37587336

RESUMO

Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function1-8. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. We found that reprogramming-induced epigenetic aberrations emerge midway through primed reprogramming, whereas DNA demethylation begins early in naive reprogramming. Using this knowledge, we developed a transient-naive-treatment (TNT) reprogramming strategy that emulates the embryonic epigenetic reset. We show that the epigenetic memory in hiPS cells is concentrated in cell of origin-dependent repressive chromatin marked by H3K9me3, lamin-B1 and aberrant CpH methylation. TNT reprogramming reconfigures these domains to a hES cell-like state and does not disrupt genomic imprinting. Using an isogenic system, we demonstrate that TNT reprogramming can correct the transposable element overexpression and differential gene expression seen in conventional hiPS cells, and that TNT-reprogrammed hiPS and hES cells show similar differentiation efficiencies. Moreover, TNT reprogramming enhances the differentiation of hiPS cells derived from multiple cell types. Thus, TNT reprogramming corrects epigenetic memory and aberrations, producing hiPS cells that are molecularly and functionally more similar to hES cells than conventional hiPS cells. We foresee TNT reprogramming becoming a new standard for biomedical and therapeutic applications and providing a novel system for studying epigenetic memory.


Assuntos
Reprogramação Celular , Epigênese Genética , Células-Tronco Pluripotentes Induzidas , Humanos , Cromatina/genética , Cromatina/metabolismo , Desmetilação do DNA , Metilação de DNA , Elementos de DNA Transponíveis , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Lamina Tipo B
3.
Nat Rev Genet ; 23(1): 55-68, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34526697

RESUMO

Plant intra-individual and inter-individual variation can be determined by the epigenome, a set of covalent modifications of DNA and chromatin that can alter genome structure and activity without changes to the genome sequence. The epigenome of plant cells is plastic, that is, it can change in response to internal or external cues, such as during development or due to environmental changes, to create a memory of such events. Ongoing advances in technologies to read and write epigenomic patterns with increasing resolution, scale and precision are enabling the extent of plant epigenome variation to be more extensively characterized and functionally interrogated. In this Review, we discuss epigenome dynamics and variation within plants during development and in response to environmental changes, including stress, as well as between plants. We review known or potential functions of such plasticity and emphasize the importance of investigating the causality of epigenomic changes. Finally, we discuss emerging technologies that may underpin future research into plant epigenome plasticity.


Assuntos
Metilação de DNA , Epigênese Genética/genética , Epigenoma/genética , Epigenômica , Variação Genética , Plantas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Modelos Genéticos , Mutação , Proteínas de Plantas/genética , Plantas/classificação , Sítio de Iniciação de Transcrição
4.
Cell ; 153(5): 1134-48, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23664764

RESUMO

Epigenetic mechanisms have been proposed to play crucial roles in mammalian development, but their precise functions are only partially understood. To investigate epigenetic regulation of embryonic development, we differentiated human embryonic stem cells into mesendoderm, neural progenitor cells, trophoblast-like cells, and mesenchymal stem cells and systematically characterized DNA methylation, chromatin modifications, and the transcriptome in each lineage. We found that promoters that are active in early developmental stages tend to be CG rich and mainly engage H3K27me3 upon silencing in nonexpressing lineages. By contrast, promoters for genes expressed preferentially at later stages are often CG poor and primarily employ DNA methylation upon repression. Interestingly, the early developmental regulatory genes are often located in large genomic domains that are generally devoid of DNA methylation in most lineages, which we termed DNA methylation valleys (DMVs). Our results suggest that distinct epigenetic mechanisms regulate early and late stages of ES cell differentiation.


Assuntos
Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Epigenômica , Regulação da Expressão Gênica no Desenvolvimento , Animais , Diferenciação Celular , Cromatina/metabolismo , Ilhas de CpG , Células-Tronco Embrionárias/citologia , Histonas/metabolismo , Humanos , Metilação , Neoplasias/genética , Regiões Promotoras Genéticas , Peixe-Zebra/embriologia
5.
Nature ; 591(7851): 627-632, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33731926

RESUMO

Human pluripotent and trophoblast stem cells have been essential alternatives to blastocysts for understanding early human development1-4. However, these simple culture systems lack the complexity to adequately model the spatiotemporal cellular and molecular dynamics that occur during early embryonic development. Here we describe the reprogramming of fibroblasts into in vitro three-dimensional models of the human blastocyst, termed iBlastoids. Characterization of iBlastoids shows that they model the overall architecture of blastocysts, presenting an inner cell mass-like structure, with epiblast- and primitive endoderm-like cells, a blastocoel-like cavity and a trophectoderm-like outer layer of cells. Single-cell transcriptomics further confirmed the presence of epiblast-, primitive endoderm-, and trophectoderm-like cells. Moreover, iBlastoids can give rise to pluripotent and trophoblast stem cells and are capable of modelling, in vitro, several aspects of the early stage of implantation. In summary, we have developed a scalable and tractable system to model human blastocyst biology; we envision that this will facilitate the study of early human development and the effects of gene mutations and toxins during early embryogenesis, as well as aiding in the development of new therapies associated with in vitro fertilization.


Assuntos
Blastocisto/citologia , Blastocisto/metabolismo , Técnicas de Cultura de Células , Reprogramação Celular , Fibroblastos/citologia , Modelos Biológicos , Transcriptoma , Feminino , Fibroblastos/metabolismo , Humanos , Técnicas In Vitro , Análise de Célula Única , Células-Tronco/citologia , Células-Tronco/metabolismo , Trofoblastos/citologia
6.
Mol Cell ; 75(3): 590-604.e12, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31230816

RESUMO

Epigenetic silencing defends against LINE-1 (L1) retrotransposition in mammalian cells. However, the mechanisms that repress young L1 families and how L1 escapes to cause somatic genome mosaicism in the brain remain unclear. Here we report that a conserved Yin Yang 1 (YY1) transcription factor binding site mediates L1 promoter DNA methylation in pluripotent and differentiated cells. By analyzing 24 hippocampal neurons with three distinct single-cell genomic approaches, we characterized and validated a somatic L1 insertion bearing a 3' transduction. The source (donor) L1 for this insertion was slightly 5' truncated, lacked the YY1 binding site, and was highly mobile when tested in vitro. Locus-specific bisulfite sequencing revealed that the donor L1 and other young L1s with mutated YY1 binding sites were hypomethylated in embryonic stem cells, during neurodifferentiation, and in liver and brain tissue. These results explain how L1 can evade repression and retrotranspose in the human body.


Assuntos
Repressão Epigenética/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Retroelementos/genética , Fator de Transcrição YY1/genética , Sítios de Ligação/genética , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Genoma Humano/genética , Hipocampo/metabolismo , Humanos , Fígado/metabolismo , Neurônios/metabolismo , Análise de Célula Única
7.
Nature ; 586(7827): 101-107, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32939092

RESUMO

The reprogramming of human somatic cells to primed or naive induced pluripotent stem cells recapitulates the stages of early embryonic development1-6. The molecular mechanism that underpins these reprogramming processes remains largely unexplored, which impedes our understanding and limits rational improvements to reprogramming protocols. Here, to address these issues, we reconstruct molecular reprogramming trajectories of human dermal fibroblasts using single-cell transcriptomics. This revealed that reprogramming into primed and naive pluripotency follows diverging and distinct trajectories. Moreover, genome-wide analyses of accessible chromatin showed key changes in the regulatory elements of core pluripotency genes, and orchestrated global changes in chromatin accessibility over time. Integrated analysis of these datasets revealed a role for transcription factors associated with the trophectoderm lineage, and the existence of a subpopulation of cells that enter a trophectoderm-like state during reprogramming. Furthermore, this trophectoderm-like state could be captured, which enabled the derivation of induced trophoblast stem cells. Induced trophoblast stem cells are molecularly and functionally similar to trophoblast stem cells derived from human blastocysts or first-trimester placentas7. Our results provide a high-resolution roadmap for the transcription-factor-mediated reprogramming of human somatic cells, indicate a role for the trophectoderm-lineage-specific regulatory program during this process, and facilitate the direct reprogramming of somatic cells into induced trophoblast stem cells.


Assuntos
Reprogramação Celular/genética , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Trofoblastos/citologia , Trofoblastos/metabolismo , Adulto , Cromatina/genética , Cromatina/metabolismo , Ectoderma/citologia , Ectoderma/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Transcrição Gênica
8.
Nucleic Acids Res ; 52(1): 474-491, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38000387

RESUMO

Targeted epigenome editing tools allow precise manipulation and investigation of genome modifications, however they often display high context dependency and variable efficacy between target genes and cell types. While systems that simultaneously recruit multiple distinct 'effector' chromatin regulators can improve efficacy, they generally lack control over effector composition and spatial organisation. To overcome this we have created a modular combinatorial epigenome editing platform, called SSSavi. This system is an interchangeable and reconfigurable docking platform fused to dCas9 that enables simultaneous recruitment of up to four different effectors, allowing precise control of effector composition and spatial ordering. We demonstrate the activity and specificity of the SSSavi system and, by testing it against existing multi-effector targeting systems, demonstrate its comparable efficacy. Furthermore, we demonstrate the importance of the spatial ordering of the recruited effectors for effective transcriptional regulation. Together, the SSSavi system enables exploration of combinatorial effector co-recruitment to enhance manipulation of chromatin contexts previously resistant to targeted editing.


Assuntos
Epigenoma , Edição de Genes , Cromatina/genética , Sistemas CRISPR-Cas , Epigênese Genética , Edição de Genes/métodos , Regulação da Expressão Gênica
9.
New Phytol ; 240(1): 61-67, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37483019

RESUMO

In recent years, single-cell genomics, coupled to imaging techniques, have become the state-of-the-art approach for characterising biological systems. In plant sciences, a variety of tissues and species have been profiled, providing an enormous quantity of data on cell identity at an unprecedented resolution, but what biological insights can be gained from such data sets? Using recently published studies in plant sciences, we will highlight how single-cell technologies have enabled a better comprehension of tissue organisation, cell fate dynamics in development or in response to various stimuli, as well as identifying key transcriptional regulators of cell identity. We discuss the limitations and technical hurdles to overcome, as well as future directions, and the promising use of single-cell omics to understand, predict, and manipulate plant development and physiology.


Assuntos
Genômica , Células Vegetais , Genômica/métodos , Diferenciação Celular , Plantas/genética
10.
Cell ; 133(3): 523-36, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18423832

RESUMO

Deciphering the multiple layers of epigenetic regulation that control transcription is critical to understanding how plants develop and respond to their environment. Using sequencing-by-synthesis technology we directly sequenced the cytosine methylome (methylC-seq), transcriptome (mRNA-seq), and small RNA transcriptome (smRNA-seq) to generate highly integrated epigenome maps for wild-type Arabidopsis thaliana and mutants defective in DNA methyltransferase or demethylase activity. At single-base resolution we discovered extensive, previously undetected DNA methylation, identified the context and level of methylation at each site, and observed local sequence effects upon methylation state. Deep sequencing of smRNAs revealed a direct relationship between the location of smRNAs and DNA methylation, perturbation of smRNA biogenesis upon loss of CpG DNA methylation, and a tendency for smRNAs to direct strand-specific DNA methylation in regions of RNA-DNA homology. Finally, strand-specific mRNA-seq revealed altered transcript abundance of hundreds of genes, transposons, and unannotated intergenic transcripts upon modification of the DNA methylation state.


Assuntos
Arabidopsis/genética , Metilação de DNA , Epigênese Genética , Genoma de Planta , Ilhas de CpG , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Perfilação da Expressão Gênica , Mutação , RNA de Plantas/metabolismo , RNA não Traduzido/metabolismo , Análise de Sequência de DNA/métodos
11.
Genome Res ; 29(8): 1277-1286, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31239280

RESUMO

The repressive capacity of cytosine DNA methylation is mediated by recruitment of silencing complexes by methyl-CpG binding domain (MBD) proteins. Despite MBD proteins being associated with silencing, we discovered that a family of arthropod Copia retrotransposons have incorporated a host-derived MBD. We functionally show how retrotransposon-encoded MBDs preferentially bind to CpG-dense methylated regions, which correspond to transposable element regions of the host genome, in the myriapod Strigamia maritima Consistently, young MBD-encoding Copia retrotransposons (CopiaMBD) accumulate in regions with higher CpG densities than other LTR-retrotransposons also present in the genome. This would suggest that retrotransposons use MBDs to integrate into heterochromatic regions in Strigamia, avoiding potentially harmful insertions into host genes. In contrast, CopiaMBD insertions in the spider Stegodyphus dumicola genome disproportionately accumulate in methylated gene bodies compared with other spider LTR-retrotransposons. Given that transposons are not actively targeted by DNA methylation in the spider genome, this distribution bias would also support a role for MBDs in the integration process. Together, these data show that retrotransposons can co-opt host-derived epigenome readers, potentially harnessing the host epigenome landscape to advantageously tune the retrotransposition process.


Assuntos
Artrópodes/genética , Ilhas de CpG , Proteínas de Ligação a DNA/genética , Genoma , Retroelementos , Sequência de Aminoácidos , Animais , Artrópodes/classificação , Artrópodes/metabolismo , Citosina/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Filogenia , Domínios Proteicos , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie
12.
Nature ; 538(7625): 336-343, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27762356

RESUMO

To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We characterize the allotetraploid origin of X. laevis by partitioning its genome into two homoeologous subgenomes, marked by distinct families of 'fossil' transposable elements. On the basis of the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged around 34 million years ago (Ma) and combined to form an allotetraploid around 17-18 Ma. More than 56% of all genes were retained in two homoeologous copies. Protein function, gene expression, and the amount of conserved flanking sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.


Assuntos
Evolução Molecular , Genoma/genética , Filogenia , Tetraploidia , Xenopus laevis/genética , Animais , Cromossomos/genética , Sequência Conservada/genética , Elementos de DNA Transponíveis/genética , Diploide , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Cariótipo , Anotação de Sequência Molecular , Mutagênese/genética , Pseudogenes , Xenopus/genética
13.
Genome Res ; 28(8): 1193-1206, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29907613

RESUMO

Detection of DNA methylation in the genome has been possible for decades; however, the ability to deliberately and specifically manipulate local DNA methylation states in the genome has been extremely limited. Consequently, this has impeded our understanding of the direct effect of DNA methylation on transcriptional regulation and transcription factor binding in the native chromatin context. Thus, highly specific targeted epigenome editing tools are needed to address this. Recent adaptations of genome editing technologies, including fusion of the DNMT3A DNA methyltransferase catalytic domain to catalytically inactive Cas9 (dC9-D3A), have aimed to alter DNA methylation at desired loci. Here, we show that these tools exhibit consistent off-target DNA methylation deposition in the genome, limiting their capabilities to unambiguously assess the functional consequences of DNA methylation. To address this, we developed a modular dCas9-SunTag (dC9Sun-D3A) system that can recruit multiple DNMT3A catalytic domains to a target site for editing DNA methylation. dC9Sun-D3A is tunable, specific, and exhibits much higher induction of DNA methylation at target sites than the dC9-D3A direct fusion protein. Importantly, genome-wide characterization of dC9Sun-D3A binding sites and DNA methylation revealed minimal off-target protein binding and induction of DNA methylation with dC9Sun-D3A, compared to pervasive off-target methylation by dC9-D3A. Furthermore, we used dC9Sun-D3A to demonstrate the binding sensitivity to DNA methylation for CTCF and NRF1 in situ. Overall, this modular dC9Sun-D3A system enables precise DNA methylation deposition with the lowest off-target DNA methylation levels reported to date, allowing accurate functional determination of the role of DNA methylation at single loci.


Assuntos
Sistemas CRISPR-Cas/genética , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Epigênese Genética , Proteínas Recombinantes de Fusão/genética , Sítios de Ligação , Domínio Catalítico/genética , Cromatina/genética , DNA Metiltransferase 3A , Edição de Genes , Regiões Promotoras Genéticas , Ligação Proteica
14.
Bioinformatics ; 36(7): 2291-2292, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794001

RESUMO

SUMMARY: Due to the scale and sparsity of single-cell RNA-sequencing data, traditional plots can obscure vital information. Our R package schex overcomes this by implementing hexagonal binning, which has the additional advantages of improving speed and reducing storage for resulting plots. AVAILABILITY AND IMPLEMENTATION: schex is freely available from Bioconductor via http://bioconductor.org/packages/release/bioc/html/schex.html and its development version can be accessed on GitHub via https://github.com/SaskiaFreytag/schex. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
RNA , Software , Sequência de Bases , Análise de Sequência de RNA , Sequenciamento do Exoma
15.
Plant Physiol ; 184(1): 148-164, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32571844

RESUMO

Protein homeostasis in eukaryotic organelles and their progenitor prokaryotes is regulated by a series of proteases including the caseinolytic protease (CLPP). CLPP has essential roles in chloroplast biogenesis and maintenance, but the significance of the plant mitochondrial CLPP remains unknown and factors that aid coordination of nuclear- and mitochondrial-encoded subunits for complex assembly in mitochondria await discovery. We generated knockout lines of the single gene for the mitochondrial CLP protease subunit, CLPP2, in Arabidopsis (Arabidopsis thaliana). Mutants showed a higher abundance of transcripts from mitochondrial genes encoding oxidative phosphorylation protein complexes, whereas nuclear genes encoding other subunits of the same complexes showed no change in transcript abundance. By contrast, the protein abundance of specific nuclear-encoded subunits in oxidative phosphorylation complexes I and V increased in CLPP2 knockouts, without accumulation of mitochondrial-encoded counterparts in the same complex. Complexes with subunits mainly or entirely encoded in the nucleus were unaffected. Analysis of protein import and function of complex I revealed that while function was retained, protein homeostasis was disrupted, leading to accumulation of soluble subcomplexes of nuclear-encoded subunits. Therefore, CLPP2 contributes to the mitochondrial protein degradation network through supporting coordination and homeostasis of protein complexes encoded across mitochondrial and nuclear genomes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Núcleo Celular/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Endopeptidase Clp/metabolismo , Regulação da Expressão Gênica de Plantas , Fosforilação Oxidativa
16.
Nature ; 518(7539): 317-30, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25693563

RESUMO

The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.


Assuntos
Epigênese Genética/genética , Epigenômica , Genoma Humano/genética , Sequência de Bases , Linhagem da Célula/genética , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromossomos Humanos/química , Cromossomos Humanos/genética , Cromossomos Humanos/metabolismo , DNA/química , DNA/genética , DNA/metabolismo , Metilação de DNA , Conjuntos de Dados como Assunto , Elementos Facilitadores Genéticos/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla , Histonas/metabolismo , Humanos , Especificidade de Órgãos/genética , RNA/genética , Valores de Referência
17.
Nat Methods ; 14(11): 1055-1062, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28945704

RESUMO

Recent reports on the characteristics of naive human pluripotent stem cells (hPSCs) obtained using independent methods differ. Naive hPSCs have been mainly derived by conversion from primed hPSCs or by direct derivation from human embryos rather than by somatic cell reprogramming. To provide an unbiased molecular and functional reference, we derived genetically matched naive hPSCs by direct reprogramming of fibroblasts and by primed-to-naive conversion using different naive conditions (NHSM, RSeT, 5iLAF and t2iLGöY). Our results show that hPSCs obtained in these different conditions display a spectrum of naive characteristics. Furthermore, our characterization identifies KLF4 as sufficient for conversion of primed hPSCs into naive t2iLGöY hPSCs, underscoring the role that reprogramming factors can play for the derivation of bona fide naive hPSCs.


Assuntos
Reprogramação Celular , Células-Tronco Pluripotentes/citologia , Diferenciação Celular , Fibroblastos/citologia , Instabilidade Genômica , Humanos , Fator 4 Semelhante a Kruppel
18.
Plant Cell ; 29(8): 1836-1863, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28705956

RESUMO

Stress recovery may prove to be a promising approach to increase plant performance and, theoretically, mRNA instability may facilitate faster recovery. Transcriptome (RNA-seq, qPCR, sRNA-seq, and PARE) and methylome profiling during repeated excess-light stress and recovery was performed at intervals as short as 3 min. We demonstrate that 87% of the stress-upregulated mRNAs analyzed exhibit very rapid recovery. For instance, HSP101 abundance declined 2-fold every 5.1 min. We term this phenomenon rapid recovery gene downregulation (RRGD), whereby mRNA abundance rapidly decreases promoting transcriptome resetting. Decay constants (k) were modeled using two strategies, linear and nonlinear least squares regressions, with the latter accounting for both transcription and degradation. This revealed extremely short half-lives ranging from 2.7 to 60.0 min for 222 genes. Ribosome footprinting using degradome data demonstrated RRGD loci undergo cotranslational decay and identified changes in the ribosome stalling index during stress and recovery. However, small RNAs and 5'-3' RNA decay were not essential for recovery of the transcripts examined, nor were any of the six excess light-associated methylome changes. We observed recovery-specific gene expression networks upon return to favorable conditions and six transcriptional memory types. In summary, rapid transcriptome resetting is reported in the context of active recovery and cellular memory.


Assuntos
Arabidopsis/genética , Arabidopsis/efeitos da radiação , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genes de Plantas , Luz , Estresse Fisiológico/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metilação de DNA/genética , Perfilação da Expressão Gênica , Inativação Gênica , Loci Gênicos , Meia-Vida , Dinâmica não Linear , Biossíntese de Proteínas , Estabilidade de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Estresse Fisiológico/efeitos da radiação , Fatores de Tempo , Transcrição Gênica/efeitos da radiação , Transcriptoma/genética
19.
Genes Dev ; 26(16): 1825-36, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22855789

RESUMO

Multisubunit RNA polymerases IV and V (Pols IV and V) mediate RNA-directed DNA methylation and transcriptional silencing of retrotransposons and heterochromatic repeats in plants. We identified genomic sites of Pol V occupancy in parallel with siRNA deep sequencing and methylcytosine mapping, comparing wild-type plants with mutants defective for Pol IV, Pol V, or both Pols IV and V. Approximately 60% of Pol V-associated regions encompass regions of 24-nucleotide (nt) siRNA complementarity and cytosine methylation, consistent with cytosine methylation being guided by base-pairing of Pol IV-dependent siRNAs with Pol V transcripts. However, 27% of Pol V peaks do not overlap sites of 24-nt siRNA biogenesis or cytosine methylation, indicating that Pol V alone does not specify sites of cytosine methylation. Surprisingly, the number of methylated CHH motifs, a hallmark of RNA-directed de novo methylation, is similar in wild-type plants and Pol IV or Pol V mutants. In the mutants, methylation is lost at 50%-60% of the CHH sites that are methylated in the wild type but is gained at new CHH positions, primarily in pericentromeric regions. These results indicate that Pol IV and Pol V are not required for cytosine methyltransferase activity but shape the epigenome by guiding CHH methylation to specific genomic sites.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citosina/metabolismo , Metilação de DNA , RNA Polimerases Dirigidas por DNA , Genoma de Planta , RNA Interferente Pequeno/metabolismo , Motivos de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , RNA Interferente Pequeno/genética
20.
BMC Bioinformatics ; 20(1): 253, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31096906

RESUMO

BACKGROUND: The development of whole genome bisulfite sequencing has made it possible to identify methylation differences at single base resolution throughout an entire genome. However, a persistent challenge in DNA methylome analysis is the accurate identification of differentially methylated regions (DMRs) between samples. Sensitive and specific identification of DMRs among different conditions requires accurate and efficient algorithms, and while various tools have been developed to tackle this problem, they frequently suffer from inaccurate DMR boundary identification and high false positive rate. RESULTS: We present a novel Histogram Of MEthylation (HOME) based method that takes into account the inherent difference in the distribution of methylation levels between DMRs and non-DMRs to discriminate between the two using a Support Vector Machine. We show that generated features used by HOME are dataset-independent such that a classifier trained on, for example, a mouse methylome training set of regions of differentially accessible chromatin, can be applied to any other organism's dataset and identify accurate DMRs. We demonstrate that DMRs identified by HOME exhibit higher association with biologically relevant genes, processes, and regulatory events compared to the existing methods. Moreover, HOME provides additional functionalities lacking in most of the current DMR finders such as DMR identification in non-CG context and time series analysis. HOME is freely available at https://github.com/ListerLab/HOME . CONCLUSION: HOME produces more accurate DMRs than the current state-of-the-art methods on both simulated and biological datasets. The broad applicability of HOME to identify accurate DMRs in genomic data from any organism will have a significant impact upon expanding our knowledge of how DNA methylation dynamics affect cell development and differentiation.


Assuntos
Algoritmos , Metilação de DNA/genética , Aprendizado de Máquina , Animais , Simulação por Computador , Bases de Dados Genéticas , Camundongos , Anotação de Sequência Molecular , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA