RESUMO
BACKGROUND: Access to neurological care for Parkinson disease (PD) is a rare privilege for millions of people worldwide, especially in resource-limited countries. In 2013, there were just 1200 neurologists in India for a population of 1.3 billion people; in Africa, the average population per neurologist exceeds 3.3 million people. In contrast, 60,000 people receive a diagnosis of PD every year in the United States alone, and similar patterns of rising PD cases-fueled mostly by environmental pollution and an aging population-can be seen worldwide. The current projection of more than 12 million patients with PD worldwide by 2040 is only part of the picture given that more than 20% of patients with PD remain undiagnosed. Timely diagnosis and frequent assessment are key to ensure timely and appropriate medical intervention, thus improving the quality of life of patients with PD. OBJECTIVE: In this paper, we propose a web-based framework that can help anyone anywhere around the world record a short speech task and analyze the recorded data to screen for PD. METHODS: We collected data from 726 unique participants (PD: 262/726, 36.1% were women; non-PD: 464/726, 63.9% were women; average age 61 years) from all over the United States and beyond. A small portion of the data (approximately 54/726, 7.4%) was collected in a laboratory setting to compare the performance of the models trained with noisy home environment data against high-quality laboratory-environment data. The participants were instructed to utter a popular pangram containing all the letters in the English alphabet, "the quick brown fox jumps over the lazy dog." We extracted both standard acoustic features (mel-frequency cepstral coefficients and jitter and shimmer variants) and deep learning-based embedding features from the speech data. Using these features, we trained several machine learning algorithms. We also applied model interpretation techniques such as Shapley additive explanations to ascertain the importance of each feature in determining the model's output. RESULTS: We achieved an area under the curve of 0.753 for determining the presence of self-reported PD by modeling the standard acoustic features through the XGBoost-a gradient-boosted decision tree model. Further analysis revealed that the widely used mel-frequency cepstral coefficient features and a subset of previously validated dysphonia features designed for detecting PD from a verbal phonation task (pronouncing "ahh") influence the model's decision the most. CONCLUSIONS: Our model performed equally well on data collected in a controlled laboratory environment and in the wild across different gender and age groups. Using this tool, we can collect data from almost anyone anywhere with an audio-enabled device and help the participants screen for PD remotely, contributing to equity and access in neurological care.
Assuntos
Disfonia , Doença de Parkinson , Idoso , Humanos , Internet , Doença de Parkinson/diagnóstico , Doença de Parkinson/epidemiologia , Qualidade de Vida , FalaRESUMO
BACKGROUND: Wearable sensors have been used successfully to characterize bradykinetic gait in patients with Parkinson disease (PD), but most studies to date have been conducted in highly controlled laboratory environments. OBJECTIVE: This paper aims to assess whether sensor-based analysis of real-life gait can be used to objectively and remotely monitor motor fluctuations in PD. METHODS: The Parkinson@Home validation study provides a new reference data set for the development of digital biomarkers to monitor persons with PD in daily life. Specifically, a group of 25 patients with PD with motor fluctuations and 25 age-matched controls performed unscripted daily activities in and around their homes for at least one hour while being recorded on video. Patients with PD did this twice: once after overnight withdrawal of dopaminergic medication and again 1 hour after medication intake. Participants wore sensors on both wrists and ankles, on the lower back, and in the front pants pocket, capturing movement and contextual data. Gait segments of 25 seconds were extracted from accelerometer signals based on manual video annotations. The power spectral density of each segment and device was estimated using Welch's method, from which the total power in the 0.5- to 10-Hz band, width of the dominant frequency, and cadence were derived. The ability to discriminate between before and after medication intake and between patients with PD and controls was evaluated using leave-one-subject-out nested cross-validation. RESULTS: From 18 patients with PD (11 men; median age 65 years) and 24 controls (13 men; median age 68 years), ≥10 gait segments were available. Using logistic LASSO (least absolute shrinkage and selection operator) regression, we classified whether the unscripted gait segments occurred before or after medication intake, with mean area under the receiver operator curves (AUCs) varying between 0.70 (ankle of least affected side, 95% CI 0.60-0.81) and 0.82 (ankle of most affected side, 95% CI 0.72-0.92) across sensor locations. Combining all sensor locations did not significantly improve classification (AUC 0.84, 95% CI 0.75-0.93). Of all signal properties, the total power in the 0.5- to 10-Hz band was most responsive to dopaminergic medication. Discriminating between patients with PD and controls was generally more difficult (AUC of all sensor locations combined: 0.76, 95% CI 0.62-0.90). The video recordings revealed that the positioning of the hands during real-life gait had a substantial impact on the power spectral density of both the wrist and pants pocket sensor. CONCLUSIONS: We present a new video-referenced data set that includes unscripted activities in and around the participants' homes. Using this data set, we show the feasibility of using sensor-based analysis of real-life gait to monitor motor fluctuations with a single sensor location. Future work may assess the value of contextual sensors to control for real-world confounders.
Assuntos
Marcha/fisiologia , Monitorização Fisiológica/métodos , Transtornos Motores/diagnóstico , Doença de Parkinson/complicações , Dispositivos Eletrônicos Vestíveis/normas , Idoso , Feminino , Humanos , Masculino , Transtornos Motores/etiologiaRESUMO
The growth of urban areas in recent years has motivated a large amount of new sensor applications in smart cities. At the centre of many new applications stands the goal of gaining insights into human activity. Scalable monitoring of urban environments can facilitate better informed city planning, efficient security, regular transport and commerce. A large part of monitoring capabilities have already been deployed; however, most rely on expensive motion imagery and privacy invading video cameras. It is possible to use a low-cost sensor alternative, which enables deep understanding of population behaviour such as the Global Positioning System (GPS) data. However, the automated analysis of such low dimensional sensor data, requires new flexible and structured techniques that can describe the generative distribution and time dynamics of the observation data, while accounting for external contextual influences such as time of day or the difference between weekend/weekday trends. In this paper, we propose a novel time series analysis technique that allows for multiple different transition matrices depending on the data's contextual realisations all following shared adaptive observational models that govern the global distribution of the data given a latent sequence. The proposed approach, which we name Adaptive Input Hidden Markov model (AI-HMM) is tested on two datasets from different sensor types: GPS trajectories of taxis and derived vehicle counts in populated areas. We demonstrate that our model can group different categories of behavioural trends and identify time specific anomalies.
Assuntos
Comportamento/fisiologia , Atividades Humanas , Modelos Estatísticos , Reconhecimento Automatizado de Padrão/métodos , Cidades , Sistemas de Informação Geográfica/instrumentação , Humanos , Movimento (Física)RESUMO
The use of wearable sensing technology for objective, non-invasive and remote clinimetric testing of symptoms has considerable potential. However, the accuracy achievable with such technology is highly reliant on separating the useful from irrelevant sensor data. Monitoring patient symptoms using digital sensors outside of controlled, clinical lab settings creates a variety of practical challenges, such as recording unexpected user behaviors. These behaviors often violate the assumptions of clinimetric testing protocols, where these protocols are designed to probe for specific symptoms. Such violations are frequent outside the lab and affect the accuracy of the subsequent data analysis and scientific conclusions. To address these problems, we report on a unified algorithmic framework for automated sensor data quality control, which can identify those parts of the sensor data that are sufficiently reliable for further analysis. Combining both parametric and nonparametric signal processing and machine learning techniques, we demonstrate that across 100 subjects and 300 clinimetric tests from three different types of behavioral clinimetric protocols, the system shows an average segmentation accuracy of around 90%. By extracting reliable sensor data, it is possible to strip the data of confounding factors in the environment that may threaten reproducibility and replicability.
RESUMO
For the treatment and monitoring of Parkinson's disease (PD) to be scientific, a key requirement is that measurement of disease stages and severity is quantitative, reliable, and repeatable. The last 50 years in PD research have been dominated by qualitative, subjective ratings obtained by human interpretation of the presentation of disease signs and symptoms at clinical visits. More recently, "wearable," sensor-based, quantitative, objective, and easy-to-use systems for quantifying PD signs for large numbers of participants over extended durations have been developed. This technology has the potential to significantly improve both clinical diagnosis and management in PD and the conduct of clinical studies. However, the large-scale, high-dimensional character of the data captured by these wearable sensors requires sophisticated signal processing and machine-learning algorithms to transform it into scientifically and clinically meaningful information. Such algorithms that "learn" from data have shown remarkable success in making accurate predictions for complex problems in which human skill has been required to date, but they are challenging to evaluate and apply without a basic understanding of the underlying logic on which they are based. This article contains a nontechnical tutorial review of relevant machine-learning algorithms, also describing their limitations and how these can be overcome. It discusses implications of this technology and a practical road map for realizing the full potential of this technology in PD research and practice. © 2016 International Parkinson and Movement Disorder Society.
Assuntos
Interpretação Estatística de Dados , Aprendizado de Máquina , Monitorização Ambulatorial/estatística & dados numéricos , Doença de Parkinson/diagnóstico , HumanosRESUMO
The miniaturization, sophistication, proliferation, and accessibility of technologies are enabling the capture of more and previously inaccessible phenomena in Parkinson's disease (PD). However, more information has not translated into a greater understanding of disease complexity to satisfy diagnostic and therapeutic needs. Challenges include noncompatible technology platforms, the need for wide-scale and long-term deployment of sensor technology (among vulnerable elderly patients in particular), and the gap between the "big data" acquired with sensitive measurement technologies and their limited clinical application. Major opportunities could be realized if new technologies are developed as part of open-source and/or open-hardware platforms that enable multichannel data capture sensitive to the broad range of motor and nonmotor problems that characterize PD and are adaptable into self-adjusting, individualized treatment delivery systems. The International Parkinson and Movement Disorders Society Task Force on Technology is entrusted to convene engineers, clinicians, researchers, and patients to promote the development of integrated measurement and closed-loop therapeutic systems with high patient adherence that also serve to (1) encourage the adoption of clinico-pathophysiologic phenotyping and early detection of critical disease milestones, (2) enhance the tailoring of symptomatic therapy, (3) improve subgroup targeting of patients for future testing of disease-modifying treatments, and (4) identify objective biomarkers to improve the longitudinal tracking of impairments in clinical care and research. This article summarizes the work carried out by the task force toward identifying challenges and opportunities in the development of technologies with potential for improving the clinical management and the quality of life of individuals with PD. © 2016 International Parkinson and Movement Disorder Society.
Assuntos
Tecnologia Biomédica/normas , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , HumanosRESUMO
We analyse time series from 100 patients with bipolar disorder for correlates of depression symptoms. As the sampling interval is non-uniform, we quantify the extent of missing and irregular data using new measures of compliance and continuity. We find that uniformity of response is negatively correlated with the standard deviation of sleep ratings (ρ = -0.26, p = 0.01). To investigate the correlation structure of the time series themselves, we apply the Edelson-Krolik method for correlation estimation. We examine the correlation between depression symptoms for a subset of patients and find that self-reported measures of sleep and appetite/weight show a lower average correlation than other symptoms. Using surrogate time series as a reference dataset, we find no evidence that depression is correlated between patients, though we note a possible loss of information from sparse sampling.
Assuntos
Afeto/fisiologia , Apetite/fisiologia , Transtorno Bipolar/fisiopatologia , Modelos Biológicos , Sono/fisiologia , Interpretação Estatística de Dados , Humanos , Estações do Ano , Fatores de TempoRESUMO
There has been consistent interest among speech signal processing researchers in the accurate estimation of the fundamental frequency (F(0)) of speech signals. This study examines ten F(0) estimation algorithms (some well-established and some proposed more recently) to determine which of these algorithms is, on average, better able to estimate F(0) in the sustained vowel /a/. Moreover, a robust method for adaptively weighting the estimates of individual F(0) estimation algorithms based on quality and performance measures is proposed, using an adaptive Kalman filter (KF) framework. The accuracy of the algorithms is validated using (a) a database of 117 synthetic realistic phonations obtained using a sophisticated physiological model of speech production and (b) a database of 65 recordings of human phonations where the glottal cycles are calculated from electroglottograph signals. On average, the sawtooth waveform inspired pitch estimator and the nearly defect-free algorithms provided the best individual F(0) estimates, and the proposed KF approach resulted in a â¼16% improvement in accuracy over the best single F(0) estimation algorithm. These findings may be useful in speech signal processing applications where sustained vowels are used to assess vocal quality, when very accurate F(0) estimation is required.
Assuntos
Algoritmos , Fonação , Fonética , Auxiliares de Comunicação para Pessoas com Deficiência , Disfonia/diagnóstico , Disfonia/fisiopatologia , Humanos , Percepção da Altura Sonora , Espectrografia do Som , Acústica da Fala , Medida da Produção da Fala/métodos , Qualidade da VozRESUMO
Dysphonia is one of the early symptoms of Parkinson's disease (PD). Most existing methods use feature selection methods to find the optimal subset of voice features for all PD patients. Few have considered the heterogeneity between patients, which implies the need to provide specific prediction models for different patients. However, building the specific model faces the challenge of small sample size, which makes it lack generalization ability. Instance transfer is an effective way to solve this problem. Therefore, this paper proposes a patient-specific game-based transfer (PSGT) method for PD severity prediction. First, a selection mechanism is used to select PD patients with similar disease trends to the target patient from the source domain, which reduces the risk of negative transfer. Then, the contribution of the transferred subjects and their instances to the disease estimation of the target subject is fairly evaluated by the Shapley value, which improves the interpretability of the method. Next, the proportion of valid instances in the transferred subjects is determined, and the instances with higher contribution are transferred to further reduce the difference between the transferred instance subset and the target subject. Finally, the selected subset of instances is added to the training set of the target subject, and the extended data is fed into the random forest to improve the performance of the method. Parkinson's telemonitoring dataset is used to evaluate the feasibility and effectiveness. The mean values of mean absolute error, root mean square error, and volatility obtained by predicting motor-UPDRS and total-UPDRS for target patients are 1.59, 1.95, 1.56 and 1.98, 2.54, 1.94, respectively. Experiment results show that the PSGT has better performance in both prediction error and stability over compared methods.
Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Aprendizado de Máquina , Índice de Gravidade de DoençaRESUMO
Remote health assessments that gather real-world data (RWD) outside clinic settings require a clear understanding of appropriate methods for data collection, quality assessment, analysis and interpretation. Here we examine the performance and limitations of smartphones in collecting RWD in the remote mPower observational study of Parkinson's disease (PD). Within the first 6 months of study commencement, 960 participants had enrolled and performed at least five self-administered active PD symptom assessments (speeded tapping, gait/balance, phonation or memory). Task performance, especially speeded tapping, was predictive of self-reported PD status (area under the receiver operating characteristic curve (AUC) = 0.8) and correlated with in-clinic evaluation of disease severity (r = 0.71; P < 1.8 × 10-6) when compared with motor Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS). Although remote assessment requires careful consideration for accurate interpretation of RWD, our results support the use of smartphones and wearables in objective and personalized disease assessments.
Assuntos
Doença de Parkinson , Smartphone , Marcha , Humanos , Movimento , Doença de Parkinson/diagnóstico , Índice de Gravidade de DoençaRESUMO
We report statistical time-series analysis tools providing improvements in the rapid, precision extraction of discrete state dynamics from time traces of experimental observations of molecular machines. By building physical knowledge and statistical innovations into analysis tools, we provide techniques for estimating discrete state transitions buried in highly correlated molecular noise. We demonstrate the effectiveness of our approach on simulated and real examples of steplike rotation of the bacterial flagellar motor and the F1-ATPase enzyme. We show that our method can clearly identify molecular steps, periodicities and cascaded processes that are too weak for existing algorithms to detect, and can do so much faster than existing algorithms. Our techniques represent a step in the direction toward automated analysis of high-sample-rate, molecular-machine dynamics. Modular, open-source software that implements these techniques is provided.
Assuntos
Fenômenos Biofísicos , Proteínas Motores Moleculares/metabolismo , Algoritmos , Simulação por Computador , Escherichia coli/enzimologia , Flagelos/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Fatores de TempoRESUMO
Parkinson's disease is a complex and heterogeneous condition, and there are many gaps in the medical community's scientific and practical understanding of the disease. Closing these gaps relies on objective data about symptoms and signs, collected over long durations. Smartphones contain sensor devices which can be used to remotely capture behavioral signals. From these signals, computational algorithms can distill metrics of symptom severity and progression. This brief review introduces the main concepts of the discipline, addressing the experimental, hardware and software logistics, and computational analysis. The article finishes with an exploration of future prospects for the technology.
Assuntos
Monitorização Fisiológica , Doença de Parkinson , Smartphone , Humanos , Monitorização Fisiológica/métodos , Doença de Parkinson/fisiopatologia , SoftwareRESUMO
Telemonitoring of Parkinson's Disease (PD) has attracted considerable research interest because of its potential to make a lasting, positive impact on the life of patients and their carers. Purpose-built devices have been developed that record various signals which can be associated with average PD symptom severity, as quantified on standard clinical metrics such as the Unified Parkinson's Disease Rating Scale (UPDRS). Speech signals are particularly promising in this regard, because they can be easily recorded without the use of expensive, dedicated hardware. Previous studies have demonstrated replication of UPDRS to within less than 2 points of a clinical raters' assessment of symptom severity, using high-quality speech signals collected using dedicated telemonitoring hardware. Here, we investigate the potential of using the standard voice-over-GSM (2G) or UMTS (3G) cellular mobile telephone networks for PD telemonitoring, networks that, together, have greater than 5 billion subscribers worldwide. We test the robustness of this approach using a simulated noisy mobile communication network over which speech signals are transmitted, and approximately 6000 recordings from 42 PD subjects. We show that UPDRS can be estimated to within less than 3.5 points difference from the clinical raters' assessment, which is clinically useful given that the inter-rater variability for UPDRS can be as high as 4-5 UPDRS points. This provides compelling evidence that the existing voice telephone network has potential towards facilitating inexpensive, mass-scale PD symptom telemonitoring applications.
RESUMO
Passive monitoring in daily life may provide valuable insights into a person's health throughout the day. Wearable sensor devices play a key role in enabling such monitoring in a non-obtrusive fashion. However, sensor data collected in daily life reflect multiple health and behavior-related factors together. This creates the need for a structured principled analysis to produce reliable and interpretable predictions that can be used to support clinical diagnosis and treatment. In this work we develop a principled modelling approach for free-living gait (walking) analysis. Gait is a promising target for non-obtrusive monitoring because it is common and indicative of many different movement disorders such as Parkinson's disease (PD), yet its analysis has largely been limited to experimentally controlled lab settings. To locate and characterize stationary gait segments in free-living using accelerometers, we present an unsupervised probabilistic framework designed to segment signals into differing gait and non-gait patterns. We evaluate the approach using a new video-referenced dataset including 25 PD patients with motor fluctuations and 25 age-matched controls, performing unscripted daily living activities in and around their own houses. Using this dataset, we demonstrate the framework's ability to detect gait and predict medication induced fluctuations in PD patients based on free-living gait. We show that our approach is robust to varying sensor locations, including the wrist, ankle, trouser pocket and lower back.
Assuntos
Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Atividades Cotidianas , Marcha , Humanos , Doença de Parkinson/diagnóstico , CaminhadaRESUMO
Ongoing biomarker development programs have been designed to identify serologic or imaging signatures of clinico-pathologic entities, assuming distinct biological boundaries between them. Identified putative biomarkers have exhibited large variability and inconsistency between cohorts, and remain inadequate for selecting suitable recipients for potential disease-modifying interventions. We launched the Cincinnati Cohort Biomarker Program (CCBP) as a population-based, phenotype-agnostic longitudinal study. While patients affected by a wide range of neurodegenerative disorders will be deeply phenotyped using clinical, imaging, and mobile health technologies, analyses will not be anchored on phenotypic clusters but on bioassays of to-be-repurposed medications as well as on genomics, transcriptomics, proteomics, metabolomics, epigenomics, microbiomics, and pharmacogenomics analyses blinded to phenotypic data. Unique features of this cohort study include (1) a reverse biology-to-phenotype direction of biomarker development in which clinical, imaging, and mobile health technologies are subordinate to biological signals of interest; (2) hypothesis free, causally- and data driven-based analyses; (3) inclusive recruitment of patients with neurodegenerative disorders beyond clinical criteria-meeting patients with Parkinson's and Alzheimer's diseases, and (4) a large number of longitudinally followed participants. The parallel development of serum bioassays will be aimed at linking biologically suitable subjects to already available drugs with repurposing potential in future proof-of-concept adaptive clinical trials. Although many challenges are anticipated, including the unclear pathogenic relevance of identifiable biological signals and the possibility that some signals of importance may not yet be measurable with current technologies, this cohort study abandons the anchoring role of clinico-pathologic criteria in favor of biomarker-driven disease subtyping to facilitate future biosubtype-specific disease-modifying therapeutic efforts.
RESUMO
Phenotype is the set of observable traits of an organism or condition. While advances in genetics, imaging, and molecular biology have improved our understanding of the underlying biology of Parkinson's disease (PD), clinical phenotyping of PD still relies primarily on history and physical examination. These subjective, episodic, categorical assessments are valuable for diagnosis and care but have left gaps in our understanding of the PD phenotype. Sensors can provide objective, continuous, real-world data about the PD clinical phenotype, increase our knowledge of its pathology, enhance evaluation of therapies, and ultimately, improve patient care. In this paper, we explore the concept of deep phenotyping-the comprehensive assessment of a condition using multiple clinical, biological, genetic, imaging, and sensor-based tools-for PD. We discuss the rationale for, outline current approaches to, identify benefits and limitations of, and consider future directions for deep clinical phenotyping.
Assuntos
Marcha/fisiologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Fenótipo , Sistema Nervoso Autônomo/fisiopatologia , Previsões , Humanos , Sono/fisiologiaRESUMO
BACKGROUND: The idiopathic inflammatory myopathies (IIMs) are a group of rare conditions characterised by muscle inflammation (myositis). Accurate disease activity assessment is vital in both clinical and research settings, however, current available methods lack ability to quantify associated variation of physical activity, an important consequence of myositis.This study aims to review studies that have collected accelerometer-derived physical activity data in IIM populations, and to investigate if these studies identified associations between physical and myositis disease activity. METHODS: A narrative review was conducted to identify original articles that have collected accelerometer-derived physical activity data in IIM populations. The following databases were searched from February 2000 until February 2019: Medline via PubMed, Embase via OVID and Scopus. RESULTS: Of the 297 publications screened, eight studies describing accelerometer use in 181 IIM cases were identified. Seven out of the eight studies investigated juvenile dermatomyositis (JDM) populations and only one reported on an adult-onset population. Population sizes, disease duration, accelerometer devices used, body placement sites, and study duration varied between each study.Accelerometer-derived physical activity levels were reduced in IIM cohorts, compared to healthy controls, and studies reported improvement of physical activity levels following exercise programme interventions, thus demonstrating efficacy.Higher levels of accelerometer-derived physical activity measurements were associated with shorter JDM disease duration, current glucocorticoid use and lower serum creatine kinase. However, no clear association between muscle strength and accelerometer-derived physical activity measures was identified. CONCLUSIONS: The use of accelerometer-derived physical activity in IIM research is in its infancy. Whilst knowledge is currently limited to small studies, the opportunities are promising and future research in this area has the potential to improve disease activity assessment for clinical and research applications.
RESUMO
BACKGROUND: The Knee OsteoArthritis, Linking Activity and Pain (KOALAP) study is the first to test the feasibility of using consumer-grade cellular smartwatches for health care research. OBJECTIVE: The overall aim was to investigate the feasibility of using consumer-grade cellular smartwatches as a novel tool to capture data on pain (multiple times a day) and physical activity (continuously) in patients with knee osteoarthritis. Additionally, KOALAP aimed to investigate smartwatch sensor data quality and assess whether engagement, acceptability, and user experience are sufficient for future large-scale observational and interventional studies. METHODS: A total of 26 participants with self-diagnosed knee osteoarthritis were recruited in September 2017. All participants were aged 50 years or over and either lived in or were willing to travel to the Greater Manchester area. Participants received a smartwatch (Huawei Watch 2) with a bespoke app that collected patient-reported outcomes via questionnaires and continuous watch sensor data. All data were collected daily for 90 days. Additional data were collected through interviews (at baseline and follow-up) and baseline and end-of-study questionnaires. This study underwent full review by the University of Manchester Research Ethics Committee (#0165) and University Information Governance (#IGRR000060). For qualitative data analysis, a system-level security policy was developed in collaboration with the University Information Governance Office. Additionally, the project underwent an internal review process at Google, including separate reviews of accessibility, product engineering, privacy, security, legal, and protection regulation compliance. RESULTS: Participants were recruited in September 2017. Data collection via the watches was completed in January 2018. Collection of qualitative data through patient interviews is still ongoing. Data analysis will commence when all data are collected; results are expected in 2019. CONCLUSIONS: KOALAP is the first health study to use consumer cellular smartwatches to collect self-reported symptoms alongside sensor data for musculoskeletal disorders. The results of this study will be used to inform the design of future mobile health studies. Results for feasibility and participant motivations will inform future researchers whether or under which conditions cellular smartwatches are a useful tool to collect patient-reported outcomes alongside passively measured patient behavior. The exploration of associations between self-reported symptoms at different moments will contribute to our understanding of whether it may be valuable to collect symptom data more frequently. Sensor data-quality measurements will indicate whether cellular smartwatch usage is feasible for obtaining sensor data. Methods for data-quality assessment and data-processing methods may be reusable, although generalizability to other clinical areas should be further investigated. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/10238.
RESUMO
Digital health technologies (smartphones, smartwatches, and other body-worn sensors) can act as novel tools to aid in the diagnosis and remote objective monitoring of an individual's disease symptoms, both in clinical care and in research. Nonetheless, such digital health technologies have yet to widely demonstrate value in clinical research due to insufficient data interpretability and lack of regulatory acceptance. Metadata, i.e., data that accompany and describe the primary data, can be utilized to better understand the context of the sensor data and can assist in data management, data sharing, and subsequent data analysis. The need for data and metadata standards for digital health technologies has been raised in academic and industry research communities and has also been noted by regulatory authorities. Therefore, to address this unmet need, we here propose a metadata set that reflects regulatory guidelines and that can serve as a conceptual map to (1) inform researchers on the metadata they should collect in digital health studies, aiming to increase the interpretability and exchangeability of their data, and (2) direct standard development organizations on how to extend their existing standards to incorporate digital health technologies. The proposed metadata set is informed by existing standards pertaining to clinical trials and medical devices, in addition to existing schemas that have supported digital health technology studies. We illustrate this specifically in the context of Parkinson's disease, as a model for a wide range of other chronic conditions for which remote monitoring would be useful in both care and science. We invite the scientific and clinical research communities to apply the proposed metadata set to ongoing and planned research. Where the proposed metadata fall short, we ask users to contribute to its ongoing revision so that an adequate degree of consensus can be maintained in a rapidly evolving technology landscape.
RESUMO
Insomnia is a common disorder linked with adverse long-term medical and psychiatric outcomes. The underlying pathophysiological processes and causal relationships of insomnia with disease are poorly understood. Here we identified 57 loci for self-reported insomnia symptoms in the UK Biobank (n = 453,379) and confirmed their effects on self-reported insomnia symptoms in the HUNT Study (n = 14,923 cases and 47,610 controls), physician-diagnosed insomnia in the Partners Biobank (n = 2,217 cases and 14,240 controls), and accelerometer-derived measures of sleep efficiency and sleep duration in the UK Biobank (n = 83,726). Our results suggest enrichment of genes involved in ubiquitin-mediated proteolysis and of genes expressed in multiple brain regions, skeletal muscle, and adrenal glands. Evidence of shared genetic factors was found between frequent insomnia symptoms and restless legs syndrome, aging, and cardiometabolic, behavioral, psychiatric, and reproductive traits. Evidence was found for a possible causal link between insomnia symptoms and coronary artery disease, depressive symptoms, and subjective well-being.