Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(15): e2400109, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594026

RESUMO

This work reports a highly-strain flexible fiber sensor with a core-shell structure utilizes a unique swelling diffusion technique to infiltrate carbon nanotubes (CNTs) into the surface layer of Ecoflex fibers. Compared with traditional blended Ecoflex/CNTs fibers, this manufacturing process ensures that the sensor maintains the mechanical properties (923% strain) of the Ecoflex fiber while also improving sensitivity (gauge factor is up to 3716). By adjusting the penetration time during fabrication, the sensor can be customized for different uses. As an application demonstration, the fiber sensor is integrated into the glove to develop a wearable gesture language recognition system with high sensitivity and precision. Additionally, the authors successfully monitor the pressure distribution on the curved surface of a soccer ball by winding the fiber sensor along the ball's surface.


Assuntos
Gestos , Nanotubos de Carbono , Pressão , Propriedades de Superfície , Dispositivos Eletrônicos Vestíveis , Nanotubos de Carbono/química , Humanos
2.
Adv Mater ; 36(21): e2313088, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308465

RESUMO

The anion-specific effects of the salting-in and salting-out phenomena are extensively observed in hydrogels, whereas the cation specificity of hydrogels is rarely reported. Herein, a multi-step strategy including borax pre-gelation, saline soaking, freeze-drying, and rehydrating is developed to fabricate polyvinyl alcohol gels with cation specificity, exhibiting the specific ordering of effects on the mechanical properties of gels as Ca2+ > Li+ > Mg2+ >> Fe3+ > Cu2+ >> Co2+ ≈ Ni2+ ≈ Zn2+. The multiple effects of the fabrication strategy, including the electrostatic repulsion among cations, skeleton support function of graphene oxide nanosheets, and water absorption and retention of ions, endow the gels with the dual characteristics of hydrogels and aerogels (i.e., hydro-aerogels). The hydro-aerogels prepared with the cationic salting-out effect display attractive pressure sensing performance with excellent stability over 90 days and enable continuous monitoring of ambient humidity in real-time and effective work in seawater to detect various parameters (e.g., depth, salinity, and temperature). The hydro-aerogels prepared without borax pretreatment or using the cationic salting-in effect can serve as quasi-solid-state electrolytes in supercapacitors, with 99.59% capacitance retention after 10 000 cycles. This study realizes cation specificity in hydrogels and designs multifunctional hydro-aerogels for promising applications in various fields.

3.
ACS Nano ; 18(5): 4579-4589, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38258755

RESUMO

To achieve a highly realistic robot, closely mimicking human skin in terms of materials and functionality is essential. This paper presents an all-protein silk fibroin bionic skin (SFBS) that emulates both fast-adapting (FA) and slow-adapting (SA) receptors. The mechanically different silk film and hydrogel, which exhibited skin-like properties, such as stretchability (>140%), elasticity, low modulus (<10 kPa), biocompatibility, and degradability, were prepared through mesoscopic reconstruction engineering to mimic the epidermis and dermis. Our SFBS, incorporating SA and FA sensors, demonstrated a highly sensitive (1.083 kPa-1) static pressure sensing performance (in vitro and in vivo), showed the ability to sense high-frequency vibrations (50-400 Hz), could discriminate materials and sliding, and could even identify the fine morphological differences between objects. As proof of concept, an SFBS-integrated rehabilitation glove was synthesized, which could help stroke patients regain sensory feedback. In conclusion, this work provides a practical approach for developing skin equivalents, prostheses, and smart robots.


Assuntos
Biônica , Fibroínas , Succinimidas , Humanos , Seda , Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA