RESUMO
BACKGROUND: Dynamic contrast-enhanced (DCE) MRI and non-mono-exponential model-based diffusion-weighted imaging (NME-DWI) that does not require contrast agent can both characterize breast cancer. However, which technique is superior remains unclear. PURPOSE: To compare the performances of DCE-MRI, NME-DWI and their combination as multiparametric MRI (MP-MRI) in the prediction of breast cancer prognostic biomarkers and molecular subtypes based on radiomics. STUDY TYPE: Prospective. POPULATION: A total of 477 female patients with 483 breast cancers (5-fold cross-validation: training/validation, 80%/20%). FIELD STRENGTH/SEQUENCE: A 3.0 T/DCE-MRI (6 dynamic frames) and NME-DWI (13 b values). ASSESSMENT: After data preprocessing, high-throughput features were extracted from each tumor volume of interest, and optimal features were selected using recursive feature elimination method. To identify ER+ vs. ER-, PR+ vs. PR-, HER2+ vs. HER2-, Ki-67+ vs. Ki-67-, luminal A/B vs. nonluminal A/B, and triple negative (TN) vs. non-TN, the following models were implemented: random forest, adaptive boosting, support vector machine, linear discriminant analysis, and logistic regression. STATISTICAL TESTS: Student's t, chi-square, and Fisher's exact tests were applied on clinical characteristics to confirm whether significant differences exist between different statuses (±) of prognostic biomarkers or molecular subtypes. The model performances were compared between the DCE-MRI, NME-DWI, and MP-MRI datasets using the area under the receiver-operating characteristic curve (AUC) and the DeLong test. P < 0.05 was considered significant. RESULTS: With few exceptions, no significant differences (P = 0.062-0.984) were observed in the AUCs of models for six classification tasks between the DCE-MRI (AUC = 0.62-0.87) and NME-DWI (AUC = 0.62-0.91) datasets, while the model performances on the two imaging datasets were significantly poorer than on the MP-MRI dataset (AUC = 0.68-0.93). Additionally, the random forest and adaptive boosting models (AUC = 0.62-0.93) outperformed other three models (AUC = 0.62-0.90). DATA CONCLUSION: NME-DWI was comparable with DCE-MRI in predictive performance and could be used as an alternative technique. Besides, MP-MRI demonstrated significantly higher AUCs than either DCE-MRI or NME-DWI. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 2.
Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Estudos Prospectivos , Antígeno Ki-67 , Prognóstico , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodosRESUMO
BACKGROUND: To explore whether the combination of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and nonmono-exponential (NME) model-based diffusion-weighted imaging (DWI) via deep neural network (DNN) can improve the prediction of breast cancer molecular subtypes compared to either imaging technique used alone. PATIENTS AND METHODS: This prospective study examined 480 breast cancers in 475 patients undergoing DCE-MRI and NME-DWI at 3.0 T. Breast cancers were classified as follows: human epidermal growth factor receptor 2 enriched (HER2-enriched), luminal A, luminal B (HER2-), luminal B (HER2+), and triple-negative subtypes. A total of 20% cases were withheld as an independent test dataset, and the remaining cases were used to train DNN with an 80% to 20% training-validation split and 5-fold cross-validation. The diagnostic accuracies of DNN in 5-way subtype classification between the DCE-MRI, NME-DWI, and their combined multiparametric-MRI datasets were compared using analysis of variance with least significant difference posthoc test. Areas under the receiver-operating characteristic curves were calculated to assess the performances of DNN in binary subtype classification between the 3 datasets. RESULTS: The 5-way classification accuracies of DNN on both DCE-MRI (0.71) and NME-DWI (0.64) were significantly lower (P < .05) than on multiparametric-MRI (0.76), while on DCE-MRI was significantly higher (P < .05) than on NME-DWI. The comparative results of binary classification between the 3 datasets were consistent with the 5-way classification. CONCLUSION: The combination of DCE-MRI and NME-DWI via DNN achieved a significant improvement in breast cancer molecular subtype prediction compared to either imaging technique used alone. Additionally, DCE-MRI outperformed NME-DWI in differentiating subtypes.