Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(7): 3761-3775, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32123902

RESUMO

We have previously shown that the highly prevalent acute myeloid leukemia (AML) mutation, Arg882His, in DNMT3A disrupts its cooperative mechanism and leads to reduced enzymatic activity, thus explaining the genomic hypomethylation in AML cells. However, the underlying cause of the oncogenic effect of Arg882His in DNMT3A is not fully understood. Here, we discovered that DNMT3A WT enzyme under conditions that favor non-cooperative kinetic mechanism as well as DNMT3A Arg882His variant acquire CpG flanking sequence preference akin to that of DNMT3B, which is non-cooperative. We tested if DNMT3A Arg882His could preferably methylate DNMT3B-specific target sites in vivo. Rescue experiments in Dnmt3a/3b double knockout mouse embryonic stem cells show that the corresponding Arg878His mutation in mouse DNMT3A severely impairs its ability to methylate major satellite DNA, a DNMT3A-preferred target, but has no overt effect on the ability to methylate minor satellite DNA, a DNMT3B-preferred target. We also observed a previously unappreciated CpG flanking sequence bias in major and minor satellite repeats that is consistent with DNMT3A and DNMT3B specificity suggesting that DNA methylation patterns are guided by the sequence preference of these enzymes. We speculate that aberrant methylation of DNMT3B target sites could contribute to the oncogenic potential of DNMT3A AML variant.


Assuntos
Substituição de Aminoácidos , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Leucemia Mieloide Aguda/genética , Animais , Arginina , Ilhas de CpG , Metilação de DNA , DNA Metiltransferase 3A , DNA Satélite/metabolismo , Células-Tronco Embrionárias/metabolismo , Humanos , Cinética , Camundongos , Mutação , Proteína Meis1/genética , Especificidade por Substrato , DNA Metiltransferase 3B
2.
Nucleic Acids Res ; 47(1): 152-167, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30321403

RESUMO

DNMT3L (DNMT3-like), a member of the DNMT3 family, has no DNA methyltransferase activity but regulates de novo DNA methylation. While biochemical studies show that DNMT3L is capable of interacting with both DNMT3A and DNMT3B and stimulating their enzymatic activities, genetic evidence suggests that DNMT3L is essential for DNMT3A-mediated de novo methylation in germ cells but is dispensable for de novo methylation during embryogenesis, which is mainly mediated by DNMT3B. How DNMT3L regulates DNA methylation and what determines its functional specificity are not well understood. Here we show that DNMT3L-deficient mouse embryonic stem cells (mESCs) exhibit downregulation of DNMT3A, especially DNMT3A2, the predominant DNMT3A isoform in mESCs. DNA methylation analysis of DNMT3L-deficient mESCs reveals hypomethylation at many DNMT3A target regions. These results confirm that DNMT3L is a positive regulator of DNA methylation, contrary to a previous report that, in mESCs, DNMT3L regulates DNA methylation positively or negatively, depending on genomic regions. Mechanistically, DNMT3L forms a complex with DNMT3A2 and prevents DNMT3A2 from being degraded. Restoring the DNMT3A protein level in DNMT3L-deficient mESCs partially recovers DNA methylation. Thus, our work uncovers a role for DNMT3L in maintaining DNMT3A stability, which contributes to the effect of DNMT3L on DNMT3A-dependent DNA methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Desenvolvimento Embrionário/genética , Animais , DNA Metiltransferase 3A , Estabilidade Enzimática/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Ligação Proteica/genética
3.
Oral Dis ; 26(7): 1513-1522, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32369672

RESUMO

OBJECTIVE: Hypohidrotic ectodermal dysplasia (HED) is a hereditary disorder characterized by abnormal structures and functions of the ectoderm-derived organs, including teeth. HED patients exhibit a variety of dental symptoms, such as hypodontia. Although disruption of the EDA/EDAR/EDARADD/NF-κB pathway is known to be responsible for HED, it remains unclear whether this pathway is involved in the process of enamel formation. EXPERIMENTAL SUBJECTS AND METHODS: To address this question, we examined the mice overexpressing Ikkß (an essential component required for the activation of NF-κB pathway) under the keratin 5 promoter (K5-Ikkß). RESULTS: Upregulation of the NF-κB pathway was confirmed in the ameloblasts of K5-Ikkß mice. Premature abrasion was observed in the molars of K5-Ikkß mice, which was accompanied by less mineralized enamel. However, no significant changes were observed in the enamel thickness and the pattern of enamel rods in K5-Ikkß mice. Klk4 expression was significantly upregulated in the ameloblasts of K5-Ikkß mice at the maturation stage, and the expression of its substrate, amelogenin, was remarkably reduced. This suggests that abnormal enamel observed in K5-Ikkß mice was likely due to the compromised degradation of enamel protein at the maturation stage. CONCLUSION: Therefore, we could conclude that the overactivation of the NF-κB pathway impairs the process of amelogenesis.


Assuntos
Ameloblastos , NF-kappa B , Amelogênese/genética , Animais , Esmalte Dentário , Humanos , Camundongos , Dente Molar
4.
Dev Dyn ; 245(9): 937-46, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27302476

RESUMO

BACKGROUND: Non-gustatory filiform papillae play critical roles in helping to grip food, drawing food to the esophagus, cleaning the mouth, and spreading saliva. The molecular mechanisms of filiform tongue papillae development however are not fully understood. RESULTS: We found Ikkα and Irf6 expression in developing tongue epithelium, and describe here specific tongue abnormalities in mice with mutation of these genes, indicating a role for Ikkα and Irf6 in filiform papillae development. Ikkα and Irf6 mutant tongues showed ectopic vertical epithelium at the midline, while lateral sides of mutant tongues adhered to the oral mucosa. Both the ectopic median vertical epithelium and adhered epithelium exhibited the presence of filiform tongue papillae, whereas epithelium between the median vertical epithelium and adhered tongue showed a loss of filiform tongue papillae. Timing of filiform papillae development was found to be slightly different between the midline and lateral regions of the wild-type tongue. CONCLUSIONS: Filiform papillae thus develop through distinct molecular mechanisms between the regions of tongue dorsum in the medio-lateral axis, with some filiform papillae developing under the control of Ikkα and Irf6. Developmental Dynamics 245:937-946, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Epitélio/metabolismo , Quinase I-kappa B/metabolismo , Fatores Reguladores de Interferon/metabolismo , Língua/embriologia , Língua/metabolismo , Animais , Epitélio/embriologia , Epitélio/ultraestrutura , Quinase I-kappa B/genética , Imuno-Histoquímica , Hibridização In Situ , Fatores Reguladores de Interferon/genética , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica de Varredura , Língua/ultraestrutura
5.
Mol Carcinog ; 54(9): 679-87, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26013997

RESUMO

As one of the key pluripotency transcription factors, NANOG plays a critical role in maintaining the self-renewal and pluripotency in normal embryonic stem cells. Recent data indicate that NANOG is expressed in a variety of cancers and its expression correlates with poor survival in cancer patients. Of interest, many studies suggest that NANOG enhances the defined characteristics of cancer stem cells and may thus function as an oncogene to promote carcinogenesis. Therefore, NANOG expression determines the cell fate not only in pluripotent cells but also in cancer cells. Although the regulation of NANOG in normal embryonic stem cells is reasonably well understood, the regulation of NANOG in cancer cells has only emerged recently. The current review provides a most updated summary on how NANOG expression is regulated during tumor development and progression.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Células-Tronco Neoplásicas/patologia , Animais , Carcinogênese/metabolismo , Carcinogênese/patologia , Proteínas Hedgehog/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Homeobox Nanog , Células-Tronco Neoplásicas/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
6.
bioRxiv ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38617249

RESUMO

DNA methylation, as exemplified by cytosine-C5 methylation in mammals and adenine-N6 methylation in bacteria, is a crucial epigenetic mechanism driving numerous vital biological processes. Developing non-nucleoside inhibitors to cause DNA hypomethylation is a high priority, in order to treat a variety of significant medical conditions without the toxicities associated with existing cytidine-based hypomethylating agents. In this study, we have characterized fifteen quinoline-based analogs. Notably, compounds with additions like a methylamine ( 9 ) or methylpiperazine ( 11 ) demonstrate similar low micromolar inhibitory potency against both human DNMT1 (which generates C5-methylcytosine) and Clostridioides difficile CamA (which generates N6-methyladenine). Structurally, compounds 9 and 11 specifically intercalate into CamA-bound DNA via the minor groove, adjacent to the target adenine, leading to a substantial conformational shift that moves the catalytic domain away from the DNA. This study adds to the limited examples of DNA methyltransferases being inhibited by non-nucleotide compounds through DNA intercalation, following the discovery of dicyanopyridine-based inhibitors for DNMT1. Furthermore, our study shows that some of these quinoline-based analogs inhibit other enzymes that act on DNA, such as polymerases and base excision repair glycosylases. Finally, in cancer cells compound 11 elicits DNA damage response via p53 activation. Highlights: Six of fifteen quinoline-based derivatives demonstrated comparable low micromolar inhibitory effects on human cytosine methyltransferase DNMT1, and the bacterial adenine methyltransferases Clostridioides difficile CamA and Caulobacter crescentus CcrM. Compounds 9 and 11 were found to intercalate into a DNA substrate bound by CamA. These quinoline-based derivatives also showed inhibitory activity against various base excision repair DNA glycosylases, and DNA and RNA polymerases. Compound 11 provokes DNA damage response via p53 activation in cancer cells.

7.
Dev Biol ; 365(1): 61-70, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22366192

RESUMO

Thickening and the subsequent invagination of the epithelium are an important initial step in ectodermal organ development. Ikkα has been shown to play a critical role in controlling epithelial growth, since Ikkα mutant mice show protrusions (evaginations) of incisor tooth, whisker and hair follicle epithelium rather than invagination. We show here that mutation of the Interferon regulatory factor (Irf) family, Irf6 also results in evagination of incisor epithelium. In common with Ikkα mutants, Irf6 mutant evagination occurs in a NF-κB-independent manner and shows the same molecular changes as those in Ikkα mutants. Irf6 thus also plays a critical role in regulating epithelial invagination. In addition, we also found that canonical Wnt signaling is upregulated in evaginated incisor epithelium of both Ikkα and Irf6 mutant embryos.


Assuntos
Epitélio/embriologia , Fatores Reguladores de Interferon/genética , Dente/embriologia , Animais , Epitélio/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Quinase I-kappa B/genética , Camundongos , Mutação , Organogênese , Transdução de Sinais , Dente/citologia , Dente/fisiologia
8.
NAR Cancer ; 5(2): zcad022, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37206360

RESUMO

Maintenance of genomic methylation patterns at DNA replication forks by DNMT1 is the key to faithful mitotic inheritance. DNMT1 is often overexpressed in cancer cells and the DNA hypomethylating agents azacytidine and decitabine are currently used in the treatment of hematologic malignancies. However, the toxicity of these cytidine analogs and their ineffectiveness in treating solid tumors have limited wider clinical use. GSK-3484862 is a newly-developed, dicyanopyridine containing, non-nucleoside DNMT1-selective inhibitor with low cellular toxicity. Here, we show that GSK-3484862 targets DNMT1 for protein degradation in both cancer cell lines and murine embryonic stem cells (mESCs). DNMT1 depletion was rapid, taking effect within hours following GSK-3484862 treatment, leading to global hypomethylation. Inhibitor-induced DNMT1 degradation was proteasome-dependent, with no discernible loss of DNMT1 mRNA. In mESCs, GSK-3484862-induced Dnmt1 degradation requires the Dnmt1 accessory factor Uhrf1 and its E3 ubiquitin ligase activity. We also show that Dnmt1 depletion and DNA hypomethylation induced by the compound are reversible after its removal. Together, these results indicate that this DNMT1-selective degrader/inhibitor will be a valuable tool for dissecting coordinated events linking DNA methylation to gene expression and identifying downstream effectors that ultimately regulate cellular response to altered DNA methylation patterns in a tissue/cell-specific manner.

9.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168392

RESUMO

CDCA7 , encoding a protein with a C-terminal cysteine-rich domain (CRD), is mutated in immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome, a disease related to hypomethylation of juxtacentromeric satellite DNA. How CDCA7 directs DNA methylation to juxtacentromeric regions is unknown. Here, we show that the CDCA7 CRD adopts a unique zinc-binding structure that recognizes a CpG dyad in a non-B DNA formed by two sequence motifs. CDCA7, but not ICF mutants, preferentially binds the non-B DNA with strand-specific CpG hemi-methylation. The unmethylated sequence motif is highly enriched at centromeres of human chromosomes, whereas the methylated motif is distributed throughout the genome. At S phase, CDCA7, but not ICF mutants, is concentrated in constitutive heterochromatin foci, and the formation of such foci can be inhibited by exogenous hemi-methylated non-B DNA bound by the CRD. Binding of the non-B DNA formed in juxtacentromeric regions during DNA replication provides a mechanism by which CDCA7 controls the specificity of DNA methylation.

10.
Am J Pathol ; 176(5): 2500-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20304950

RESUMO

Ultraviolet B light (UVB) is a common cause of human skin cancer. UVB irradiation induces mutations in the tumor suppressor p53 gene as well as chronic inflammation, which are both essential for UVB carcinogenesis. Inhibitor of nuclear factor kappaB kinase-alpha (IKKalpha) plays an important role in maintaining skin homeostasis, and expression of IKKalpha was found to be down-regulated in human and murine skin squamous cell carcinomas. However, the role of IKKalpha in UVB skin carcinogenesis has not been investigated. Thus, here we performed UVB carcinogenesis experiments on Ikkalpha(+/+) and Ikkalpha(+/-) mice. Ikkalpha(+/-) mice were found to develop a twofold greater number of skin tumors than Ikkalpha(+/+) mice after chronic UVB irradiation. In addition, tumor latency was significantly shorter and tumors were bigger in Ikkalpha(+/-) than in Ikkalpha(+/+) mice. At an early stage of carcinogenesis, an increase in UVB-induced p53 mutations as well as macrophage recruitment and mitogenic activity, and a decrease in UVB-induced apoptosis, were detected in Ikkalpha(+/-) compared with those in Ikkalpha(+/+) skin. Also, reduction of IKKalpha levels in keratinocytes up-regulated the expression of monocyte chemoattractant protein-1 (MCP-1/CCL2), TNFalpha, IL-1, and IL-6, and elevated macrophage migration, which might promote macrophage recruitment and inflammation. Therefore, these findings suggest that reduction of IKKalpha expression orchestrates UVB carcinogen, accelerating tumorigenesis.


Assuntos
Regulação Neoplásica da Expressão Gênica , Quinase I-kappa B/genética , Animais , Quimiocina CCL2/metabolismo , Reparo do DNA , Genes p53 , Quinase I-kappa B/fisiologia , Inflamação , Queratinócitos/citologia , Antígeno Ki-67/biossíntese , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Radioimunoensaio , Raios Ultravioleta
11.
Future Oncol ; 7(1): 123-34, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21174543

RESUMO

Squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) are two major types of skin cancer derived from keratinocytes. SCC is a more aggressive type of cancer than BCC in humans. One significant difference between SCC and BCC is that SCC development is generally associated with cell dedifferentiation and morphological changes. When SCC is converted to spindle cell carcinoma, the latest stage of cancer, the tumor cells change to a fibroblastic cell morphology (epithelial-to-mesenchymal transition) and lose their differentiation markers. Recently, several laboratories have reported altered IκB kinase α (IKKα) protein localization, downregulated IKKα, and IKKα gene deletions and mutations in human SCCs of the skin, lung, esophagus, and neck and head. In addition, IKKα reduction promotes chemical carcinogen- and ultraviolet B-induced skin carcinogenesis, and IKKα deletion in keratinocytes causes spontaneous skin SCCs, but not BCCs, in mice. Thus, IKKα emerges as a bona fide skin tumor suppressor. In this article, we will discuss the role of IKKα in skin SCC development.


Assuntos
Carcinoma de Células Escamosas/enzimologia , Quinase I-kappa B/metabolismo , Neoplasias Cutâneas/enzimologia , Animais , Regulação Neoplásica da Expressão Gênica , Técnicas de Introdução de Genes , Genes Supressores de Tumor , Humanos , Quinase I-kappa B/genética , Queratinócitos/enzimologia , Camundongos , Camundongos Knockout , Modelos Animais , Transdução de Sinais
12.
Oncotarget ; 11(46): 4243-4252, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33245716

RESUMO

Prostate cancer (PCa) is one of the leading causes of cancer-related deaths worldwide. Prostate tumorigenesis and PCa progression involve numerous genetic as well as epigenetic perturbations. Histone modification represents a fundamental epigenetic mechanism that regulates diverse cellular processes, and H3K4 methylation, one such histone modification associated with active transcription, can be reversed by dedicated histone demethylase KDM5B (JARID1B). Abnormal expression and functions of KDM5B have been implicated in several cancer types including PCa. Consistently, our bioinformatics analysis reveals that the KDM5B mRNA levels are upregulated in PCa compared to benign prostate tissues, and correlate with increased tumor grade and poor patient survival, supporting an oncogenic function of KDM5B in PCa. Surprisingly, however, when we generated prostate-specific conditional Kdm5b knockout mice using probasin (Pb) promoter-driven Cre: loxP system, we observed that Kdm5b deletion did not affect normal prostate development but instead induced mild hyperplasia. These results suggest that KDM5B may possess context-dependent roles in normal prostate development vs. PCa development and progression.

14.
Cancer Res ; 67(19): 9158-68, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17909021

RESUMO

We reported recently a marked reduction in IkappaB kinase alpha (IKKalpha) expression in a large proportion of human poorly differentiated squamous cell carcinomas (SCC) and the occurrence of Ikkalpha mutations in human SCCs. In addition, overexpression of IKKalpha in the epidermis inhibited the development of skin carcinomas and metastases in mice. However, whether a reduction in IKKalpha expression promotes skin tumor development is currently unknown. Here, we assessed the susceptibility of Ikkalpha hemizygotes to chemical carcinogen-induced skin carcinogenesis. Ikkalpha+/- mice developed 2 times more papillomas and 11 times more carcinomas than did Ikkalpha+/+ mice. The tumors were larger in Ikkalpha+/- than in Ikkalpha+/+ mice, but tumor latency was shorter in Ikkalpha+/- than in Ikkalpha+/+ mice. Some of the Ikkalpha+/- papillomas and most Ikkalpha+/- carcinomas lost the remaining Ikkalpha wild-type allele. Somatic Ikkalpha mutations were detected in carcinomas and papillomas. The chemical carcinogen-induced H-Ras mutations were detected in all the tumors. The phorbol ester tumor promoter induced higher mitogenic and angiogenic activities in Ikkalpha+/- than in Ikkalpha+/+ skin. These elevated activities were intrinsic to keratinocytes, suggesting that a reduction in IKKalpha expression provided a selective growth advantage, which cooperated with H-Ras mutations to promote papilloma formation. Furthermore, excessive extracellular signal-regulated kinase and IKK kinase activities were observed in carcinomas compared with those in papillomas. Thus, the combined mitogenic, angiogenic, and IKK activities might contribute to malignant conversion. Our findings provide evidence that a reduction in IKKalpha expression promotes the development of papillomas and carcinomas and that the integrity of the Ikkalpha gene is required for suppressing skin carcinogenesis.


Assuntos
Carcinoma/enzimologia , Quinase I-kappa B/biossíntese , Papiloma/enzimologia , Neoplasias Cutâneas/enzimologia , 9,10-Dimetil-1,2-benzantraceno , Sequência de Aminoácidos , Animais , Sequência de Bases , Carcinógenos , Carcinoma/irrigação sanguínea , Carcinoma/induzido quimicamente , Carcinoma/genética , Cocarcinogênese , Feminino , Genes ras , Predisposição Genética para Doença , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Mutação , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Papiloma/irrigação sanguínea , Papiloma/induzido quimicamente , Papiloma/genética , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/induzido quimicamente , Neoplasias Cutâneas/genética , Acetato de Tetradecanoilforbol , Fator A de Crescimento do Endotélio Vascular/biossíntese
15.
Nat Commun ; 10(1): 5494, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31792211

RESUMO

LRIG1 has been reported to be a tumor suppressor in gastrointestinal tract and epidermis. However, little is known about the expression, regulation and biological functions of LRIG1 in prostate cancer (PCa). We find that LRIG1 is overexpressed in PCa, but its expression correlates with better patient survival. Functional studies reveal strong tumor-suppressive functions of LRIG1 in both AR+ and AR- xenograft models, and transgenic expression of LRIG1 inhibits tumor development in Hi-Myc and TRAMP models. LRIG1 also inhibits castration-resistant PCa and exhibits therapeutic efficacy in pre-established tumors. We further show that 1) AR directly transactivates LRIG1 through binding to several AR-binding sites in LRIG1 locus, and 2) LRIG1 dampens ERBB expression in a cell type-dependent manner and inhibits ERBB2-driven tumor growth. Collectively, our study indicates that LRIG1 represents a pleiotropic AR-regulated feedback tumor suppressor that functions to restrict oncogenic signaling from AR, Myc, ERBBs, and, likely, other oncogenic drivers.


Assuntos
Glicoproteínas de Membrana/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína Oncogênica p55(v-myc)/genética , Proteína Oncogênica p55(v-myc)/metabolismo , Neoplasias da Próstata/genética , Ligação Proteica , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Receptores Androgênicos/genética , Transdução de Sinais , Proteínas Supressoras de Tumor/genética
16.
Eur J Neurosci ; 27(7): 1626-33, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18380665

RESUMO

Dopamine signalling is a critically important process in the human brain that controls mood, cognition and motor activity. In order to gain detailed insight into this signalling pathway at the molecular level, we carried out yeast two-hybrid screens with D1-like (D1, D5) and D2-like (D2, D3, D4) dopamine receptors and identified 11 dopamine receptor interacting proteins (DRIPs). Using the C-terminal domain of D1 receptor as bait, we identified AIP1 (ALG-2 interacting protein 1), a known modulator of caspase-dependent and caspase-independent cell death, including neuronal cell death, that is also part of the endosomal transport system. In a separate yeast two-hybrid screen, using the third intracellular cytoplasmic loop of D3 as bait, we again identified AIP1. The interaction of AIP1 with both D1 and D3 was confirmed in vitro and in vivo using a variety of methods, including glutathione S-transferase (GST) pull-down, blot overlay and coimmunoprecipitation from mouse brain lysates. We have also observed colocalization of D1 and D3 with AIP1 in mouse brain tissue. In addition, coexpression of AIP1 with D1 resulted in > 50% reduction in binding capacity of D1 to its antagonist. Finally, AIP1 up-regulates D1 and D3 expression and appears to be important for their stability and trafficking.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Receptores de Dopamina D1/fisiologia , Receptores de Dopamina D3/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Complexos Endossomais de Distribuição Requeridos para Transporte , Humanos , Camundongos , Ligação Proteica/fisiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Ratos , Receptores de Dopamina D1/genética , Receptores de Dopamina D3/genética , Transdução de Sinais/genética
17.
Nat Commun ; 9(1): 3600, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30190514

RESUMO

Expression of androgen receptor (AR) in prostate cancer (PCa) is heterogeneous but the functional significance of AR heterogeneity remains unclear. Screening ~200 castration-resistant PCa (CRPC) cores and whole-mount sections (from 89 patients) reveals 3 AR expression patterns: nuclear (nuc-AR), mixed nuclear/cytoplasmic (nuc/cyto-AR), and low/no expression (AR-/lo). Xenograft modeling demonstrates that AR+ CRPC is enzalutamide-sensitive but AR-/lo CRPC is resistant. Genome editing-derived AR+ and AR-knockout LNCaP cell clones exhibit distinct biological and tumorigenic properties and contrasting responses to enzalutamide. RNA-Seq and biochemical analyses, coupled with experimental combinatorial therapy, identify BCL-2 as a critical therapeutic target and provide proof-of-concept therapeutic regimens for both AR+/hi and AR-/lo CRPC. Our study links AR expression heterogeneity to distinct castration/enzalutamide responses and has important implications in understanding the cellular basis of prostate tumor responses to AR-targeting therapies and in facilitating development of novel therapeutics to target AR-/lo PCa cells/clones.


Assuntos
Feniltioidantoína/análogos & derivados , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Animais , Antineoplásicos/farmacologia , Benzamidas , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos Knockout , Terapia de Alvo Molecular , Nitrilas , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores Androgênicos/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncotarget ; 8(32): 52746-52760, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28881767

RESUMO

This project was undertaken to address a critical cancer biology question: Is overexpression of the pluripotency molecule Nanog sufficient to initiate tumor development in a somatic tissue? Nanog1 is critical for the self-renewal and pluripotency of ES cells, and its retrotransposed homolog, NanogP8 is preferentially expressed in somatic cancer cells. Our work has shown that shRNA-mediated knockdown of NanogP8 in prostate, breast, and colon cancer cells inhibits tumor regeneration whereas inducible overexpression of NanogP8 promotes cancer stem cell phenotypes and properties. To address the key unanswered question whether tissue-specific overexpression of NanogP8 is sufficient to promote tumor development in vivo, we generated a NanogP8 transgenic mouse model, in which the ARR2PB promoter was used to drive NanogP8 cDNA. Surprisingly, the ARR2PB-NanogP8 transgenic mice were viable, developed normally, and did not form spontaneous tumors in >2 years. Also, both wild type and ARR2PB-NanogP8 transgenic mice responded similarly to castration and regeneration and castrated ARR2PB-NanogP8 transgenic mice also did not develop tumors. By crossing the ARR2PB-NanogP8 transgenic mice with ARR2PB-Myc (i.e., Hi-Myc) mice, we found that the double transgenic (i.e., ARR2PB-NanogP8; Hi-Myc) mice showed similar tumor incidence and histology to the Hi-Myc mice. Interestingly, however, we observed white dots in the ventral lobes of the double transgenic prostates, which were characterized as overgrown ductules/buds featured by crowded atypical Nanog-expressing luminal cells. Taken together, our present work demonstrates that transgenic overexpression of NanogP8 in the mouse prostate is insufficient to initiate tumorigenesis but weakly promotes tumor development in the Hi-Myc mouse model.

19.
Nat Commun ; 8: 14270, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112170

RESUMO

MicroRNAs play important roles in regulating tumour development, progression and metastasis. Here we show that one of the miR-200 family members, miR-141, is under-expressed in several prostate cancer (PCa) stem/progenitor cell populations in both xenograft and primary patient tumours. Enforced expression of miR-141 in CD44+ and bulk PCa cells inhibits cancer stem cell properties including holoclone and sphere formation, as well as invasion, and suppresses tumour regeneration and metastasis. Moreover, miR-141 expression enforces a strong epithelial phenotype with a partial loss of mesenchymal phenotype. Whole-genome RNA sequencing uncovers novel miR-141-regulated molecular targets in PCa cells including the Rho GTPase family members (for example, CDC42, CDC42EP3, RAC1 and ARPC5) and stem cell molecules CD44 and EZH2, all of which are validated as direct and functionally relevant targets of miR-141. Our results suggest that miR-141 employs multiple mechanisms to obstruct tumour growth and metastasis.


Assuntos
Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica/fisiologia , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Masculino , Camundongos , Camundongos SCID , MicroRNAs/genética , Invasividade Neoplásica , Neoplasias Experimentais , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
20.
Oncotarget ; 7(35): 56628-56642, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-27447749

RESUMO

Human cancers exhibit significant cellular heterogeneity featuring tumorigenic cancer stem cells (CSCs) in addition to more differentiated progeny with limited tumor-initiating capabilities. Recent studies suggest that microRNAs (miRNAs) regulate CSCs and tumor development. A previous library screening for differential miRNA expression in CD44+ (and other) prostate CSC vs. non-CSC populations identified miR-199a-3p to be among the most highly under-expressed miRNAs in CSCs. In this study, we characterized the biological functions of miR-199a-3p in CD44+ prostate cancer (PCa) cells and in tumor regeneration. Overexpression of miR-199a-3p in purified CD44+ or bulk PCa cells, including primary PCa, inhibited proliferation and clonal expansion without inducing apoptosis. miR-199a-3p overexpression also diminished tumor-initiating capacities of CD44+ PCa cells as well as tumor regeneration from bulk PCa cells. Importantly, inducible miR-199a-3p expression in pre-established prostate tumors in NOD/SCID mice inhibited tumor growth. Using target prediction program and luciferase assays, we show mechanistically that CD44 is a direct functional target of miR-199a-3p in PCa cells. Moreover, miR-199a-3p also directly or indirectly targeted several additional mitogenic molecules, including c-MYC, cyclin D1 (CCND1) and EGFR. Taken together, our results demonstrate how the aberrant loss of a miRNA-mediated mechanism can lead to the expansion and tumorigenic activity of prostate CSCs, further supporting the development and implementation of miRNA mimics for cancer treatment.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Apoptose/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Ciclina D1/metabolismo , Receptores ErbB/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Neoplasias da Próstata/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA