Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 24(63): 16804-16813, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30133022

RESUMO

A copper(I) 3,5-diphenyltriazolate metal-organic framework (CuTz-1) was synthesized and extensively characterized by using a multi-technique approach. The combined results provided solid evidence that CuTz-1 features an unprecedented Cu5 tz6 cluster as the secondary building unit (SBU) with channels approximately 8.3 Šin diameter. This metal-organic framework (MOF) material, which is both thermally and chemically (basic and acidic) stable, exhibited semiconductivity and high photocatalytic activity towards the degradation of dyes in the presence of H2 O2 . Its catalytic performance was superior to that of reported MOFs and comparable to some composites, which has been attributed to its high efficiency in generating . OH, the most active species for the degradation of dyes. It is suggested that the photogenerated holes are trapped by CuI , which yields CuII , the latter of which behaves as a catalyst for a Fenton-like reaction to produce an excess amount of . OH in addition to that formed through the scavenging of photogenerated electrons by H2 O2 . Furthermore, it was shown that a dye mixture (methyl orange, methyl blue, methylene blue, and rhodamine B) could be totally decolorized by using CuTz-1 as a photocatalyst in the presence of H2 O2 under the irradiation of a Xe lamp or natural sunlight.

2.
Foods ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540809

RESUMO

The nonantimicrobial properties and relatively poor mechanical properties of hydroxyethyl cellulose (HEC) limit its use in packaging. Sulfated rice bran polysaccharides (SRBP) possess significant antioxidant and antimicrobial activities. The purpose of this study was to investigate the effect of different concentrations of SRBP on the physical and mechanical properties and the functional characteristics of HEC/SRBP films. The physical properties of the HEC/20% SRBP films, such as water resistance, water vapor barrier, light barrier, and tensile strength, improved significantly (p < 0.05) compared with those of the HEC films. Scanning electron microscopy and Fourier transform infrared spectrometry showed that HEC formed hydrogen bonds with SRBP and exhibited better compatibility. Thermogravimetric analysis revealed that the addition of SRBP was beneficial to the thermal stability of the films. In addition, the antioxidant and bacteriostatic properties of the films were enhanced by the addition of SRBP to HEC, with the 20% SRBP films showing the most significant enhancement in activity. Therefore, the HEC/20% SRBP films show potential for development for use as active food packaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA