Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 14(46): e1802734, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30369045

RESUMO

Polymer vesicles, also known as polymersomes, have garnered a lot of interest even before the first report of their fabrication in the mid-1990s. These capsules have found applications in areas such as drug delivery, diagnostics and cellular models, and are made via the self-assembly of amphiphilic block copolymers, predominantly with soft, rubbery hydrophobic segments. Comparatively, and despite their remarkable impermeability, glassy polymersomes (GPs) have been less pervasive due to their rigidity, lack of biodegradability and more restricted fabrication strategies. GPs are now becoming more prominent, thanks to their ability to undergo stable shape-change (e.g., into non-spherical morphologies) as a response to a predetermined trigger (e.g., light, solvent). The basics of block copolymer self-assembly with an emphasis on polymersomes and GPs in particular are reviewed here. The principles and advantages of shape transformation of GPs as well as their general usefulness are also discussed, together with some of the challenges and opportunities currently facing this area.

2.
Micromachines (Basel) ; 8(8)2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-30400433

RESUMO

Reagent pencils allow for solvent-free deposition of reagents onto paper-based microfluidic devices. The pencils are portable, easy to use, extend the shelf-life of reagents, and offer a platform for customizing diagnostic devices at the point of care. In this work, reagent pencils were characterized by measuring the wear resistance of pencil cores made from polyethylene glycols (PEGs) with different molecular weights and incorporating various concentrations of three different reagents using a standard pin abrasion test, as well as by measuring the efficiency of reagent delivery from the pencils to the test zones of paper-based microfluidic devices using absorption spectroscopy and digital image colorimetry. The molecular weight of the PEG, concentration of the reagent, and the molecular weight of the reagent were all found to have an inverse correlation with the wear of the pencil cores, but the amount of reagent delivered to the test zone of a device correlated most strongly with the concentration of the reagent in the pencil core. Up to 49% of the total reagent deposited on a device with a pencil was released into the test zone, compared to 58% for reagents deposited from a solution. The results suggest that reagent pencils can be prepared for a variety of reagents using PEGs with molecular weights in the range of 2000 to 6000 g/mol.

3.
Lab Chip ; 15(10): 2213-20, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25851055

RESUMO

Custom-made pencils containing reagents dispersed in a solid matrix were developed to enable rapid and solvent-free deposition of reagents onto membrane-based fluidic devices. The technique is as simple as drawing with the reagent pencils on a device. When aqueous samples are added to the device, the reagents dissolve from the pencil matrix and become available to react with analytes in the sample. Colorimetric glucose assays conducted on devices prepared using reagent pencils had comparable accuracy and precision to assays conducted on conventional devices prepared with reagents deposited from solution. Most importantly, sensitive reagents, such as enzymes, are stable in the pencils under ambient conditions, and no significant decrease in the activity of the enzyme horseradish peroxidase stored in a pencil was observed after 63 days. Reagent pencils offer a new option for preparing and customizing diagnostic tests at the point of care without the need for specialized equipment.


Assuntos
Dispositivos Lab-On-A-Chip , Papel , Peroxidase do Rábano Silvestre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA