Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nano Lett ; 22(16): 6833-6840, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-35819288

RESUMO

Limited healthcare capacity highlights the needs of integrated sensing systems for personalized health-monitoring. However, only limited sensors can be employed for point-of-care applications, emphasizing the lack of a generalizable sensing platform. Here, we report a metal organic framework (MOF) ZIF-90-ZnO-MoS2 nanohybrid-based integrated electrochemical liquid biopsy (ELB) platform capable of direct profiling cancer exosomes from blood. Using a bottom-up approach for sensor design, a series of critical sensing functions is considered and encoded into the MOF material interface by programming the material with different chemical and structural features. The MOF-based ELB platform is able to achieve one-step sensor fabrication, target isolation, nonfouling and high-sensitivity sensing, direct signal transduction, and multiplexed detection. We demonstrated the capability of the designed sensing system on differentiating cancerous groups from healthy controls by analyzing clinical samples from lung cancer patients, providing a generalizable sensing platform.


Assuntos
Estruturas Metalorgânicas , Óxido de Zinco , Técnicas Eletroquímicas , Humanos , Biópsia Líquida , Estruturas Metalorgânicas/química
2.
Small ; 16(18): e2000307, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32250065

RESUMO

Alpha-methylacyl-CoA racemase (AMACR) has been proven to be consistently overexpressed in prostate cancer epitheliums, and is expected to act as a positive biomarker for the diagnosis of prostate carcinoma in clinical practice. Here, a strategy for specific determination of AMACR in real human serum by using an electrochemical microsensor system is presented. In order to implement the protocol, a self-organized nanohybrid consisting of metal nanopillars in a 2D MoS2 matrix is developed as material for the sensing interface. The testing signal outputs are strongly enhanced with the presence of the nanohybrids owing to that the metal pillars provide an efficient mass difussion and electron transfer path to the MoS2 film surface. Furthermore, the phase-regulated sensing mechanism over MoS2 is noticed and demonstrated by density functional theory calculation and experiments. The explored MoS2 based nanohybrids are employed for the fabrication of an electrochemical microsensor, presenting good linear relationship in both ng µL-1 and pg µL-1 ranges for AMACR quantification. The sampling analysis of human serum indicates that this microsensor has good diagnostic specificity and sensitivity toward AMACR. The proposed electrochemical microsensor system also demonstrates the advantages of convenience, cost-effectiveness, and disposability, resulting in a potential integrated microsystem for point-of-care prostate cancer diagnosis.


Assuntos
Nanopartículas Metálicas , Molibdênio , Sistemas Automatizados de Assistência Junto ao Leito , Neoplasias da Próstata , Racemases e Epimerases/análise , Biomarcadores Tumorais/análise , Humanos , Masculino , Neoplasias da Próstata/diagnóstico
3.
Angew Chem Int Ed Engl ; 59(46): 20545-20551, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32835412

RESUMO

Modular construction of an autonomous and programmable multi-functional heterogeneous biochemical circuit that can identify, transform, translate, and amplify biological signals into physicochemical signals based on logic design principles can be a powerful means for the development of a variety of biotechnologies. To explore the conceptual validity, we design a CRISPR-array-mediated primer-exchange-reaction-based biochemical circuit cascade, which probes a specific biomolecular input, transform the input into a structurally accessible form for circuit wiring, translate the input information into an arbitrary sequence, and finally amplify the prescribed sequence through autonomous formation of a signaling concatemer. This upstream biochemical circuit is further wired with a downstream electrochemical interface, delivering an integrated bioanalytical platform. We program this platform to directly analyze the genome of SARS-CoV-2 in human cell lysate, demonstrating the capability and the utility of this unique integrated system.


Assuntos
Técnicas Biossensoriais/métodos , Genes Virais , SARS-CoV-2/genética , COVID-19/patologia , COVID-19/virologia , Sistemas CRISPR-Cas/genética , Linhagem Celular , Técnicas Eletroquímicas , Humanos , Técnicas de Amplificação de Ácido Nucleico , RNA Guia de Cinetoplastídeos/metabolismo , SARS-CoV-2/isolamento & purificação
4.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878197

RESUMO

Detection of biomarkers has raised much interest recently due to the need for disease diagnosis and personalized medicine in future point-of-care systems. Among various biomarkers, antibodies are an important type of detection target due to their potential for indicating disease progression stage and the efficiency of therapeutic antibody drug treatment. In this review, electrochemical and optical detection of antibodies are discussed. Specifically, creating a non-label and reagent-free sensing platform and construction of an anti-fouling electrochemical surface for electrochemical detection are suggested. For optical transduction, a rapid and programmable platform for antibody detection using a DNA-based beacon is suggested as well as the use of bioluminescence resonance energy transfer (BRET) switch for low cost antibody detection. These sensing strategies have demonstrated their potential for resolving current challenges in antibody detection such as high selectivity, low operation cost, simple detection procedures, rapid detection, and low-fouling detection. This review provides a general update for recent developments in antibody detection strategies and potential solutions for future clinical point-of-care systems.


Assuntos
Anticorpos/análise , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Humanos , Medições Luminescentes/métodos
5.
Angew Chem Int Ed Engl ; 58(36): 12355-12368, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-30990933

RESUMO

A number of very recently developed electrochemical biosensing strategies are promoting electrochemical biosensing systems into practical point-of-care applications. The focus of research endeavors has transferred from detection of a specific analyte to the development of general biosensing strategies that can be applied for a single category of analytes, such as nucleic acids, proteins, and cells. In this Minireview, recent cutting-edge research on electrochemical biosensing strategies are described. These developments resolved critical challenges regarding the application of electrochemical biosensors to practical point-of-care systems, such as rapid readout, simple biosensor fabrication method, ultra-high detection sensitivity, direct analysis in a complex biological matrix, and multiplexed target analysis. This Minireview provides general guidelines both for scientists in the biosensing research community and for the biosensor industry on development of point-of-care system, benefiting global healthcare.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Ácidos Nucleicos/análise , Sistemas Automatizados de Assistência Junto ao Leito/normas , Proteínas/análise , Humanos
6.
Angew Chem Int Ed Engl ; 58(48): 17399-17405, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31568601

RESUMO

An accurate, rapid, and cost-effective biosensor for the quantification of disease biomarkers is vital for the development of early-diagnostic point-of-care systems. The recent discovery of the trans-cleavage property of CRISPR type V effectors makes CRISPR a potential high-accuracy bio-recognition tool. Herein, a CRISPR-Cas12a (cpf1) based electrochemical biosensor (E-CRISPR) is reported, which is more cost-effective and portable than optical-transduction-based biosensors. Through optimizing the in vitro trans-cleavage activity of Cas12a, E-CRIPSR was used to detect viral nucleic acids, including human papillomavirus 16 (HPV-16) and parvovirus B19 (PB-19), with a picomolar sensitivity. An aptamer-based E-CRISPR cascade was further designed for the detection of transforming growth factor ß1 (TGF-ß1) protein in clinical samples. As demonstrated, E-CRISPR could enable the development of portable, accurate, and cost-effective point-of-care diagnostic systems.


Assuntos
Aptâmeros de Nucleotídeos/química , Sistemas CRISPR-Cas/genética , DNA Viral/química , Papillomavirus Humano 16/genética , Ácidos Nucleicos Imobilizados/química , Parvovirus/genética , Acidaminococcus/genética , Técnicas Biossensoriais , Clivagem do DNA , Técnicas Eletroquímicas , Eletrodos , Humanos , Limite de Detecção , Células-Tronco Mesenquimais , Sensibilidade e Especificidade , Propriedades de Superfície , Fator de Crescimento Transformador beta1/análise , Fator de Crescimento Transformador beta1/metabolismo
7.
Environ Sci Technol ; 52(19): 11309-11318, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30189143

RESUMO

Manganese dioxides (MnO2) are among important environmental oxidants in contaminant removal; however, most existing work has only focused on naturally abundant MnO2. We herein report the effects of different phase structures of synthetic MnO2 on their oxidative activity with regard to contaminant degradation. Bisphenol A (BPA), a frequently detected contaminant in the environment, was used as a probe compound. A total of eight MnO2 with five different phase structures (α-, ß-, γ-, δ-, and λ-MnO2) were successfully synthesized with different methods. The oxidative reactivity of MnO2, as quantified by pseudo-first-order rate constants of BPA oxidation, followed the order of δ-MnO2-1 > δ-MnO2-2 > α-MnO2-1 > α-MnO2-2 ≈ γ-MnO2 > λ-MnO2 > ß-MnO2-2 > ß-MnO2-1. Extensive characterization was then conducted for MnO2 crystal structure, morphology, surface area, reduction potential, conductivity, and surface Mn oxidation states and oxygen species. The results showed that the MnO2 oxidative reactivity correlated highly positively with surface Mn(III) content and negatively with surface Mn average oxidation state but correlated poorly with all other properties. This indicates that surface Mn(III) played an important role in MnO2 oxidative reactivity. For the same MnO2 phase structure synthesized by different methods, higher surface area, reduction potential, conductivity, or surface adsorbed oxygen led to higher reactivity, suggesting that these properties play a secondary role in the reactivity. These findings provide general guidance for designing active MnO2 for cost-effective water and wastewater treatment.


Assuntos
Compostos Benzidrílicos , Compostos de Manganês , Oxirredução , Estresse Oxidativo , Óxidos , Fenóis
8.
Sensors (Basel) ; 17(5)2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28441356

RESUMO

This research has developed a simple to use, cost effective sensor system for the detection of lead ions in tap water. An under-potential deposited bismuth sub-layer on a thin gold film based electrochemical sensor was designed, manufactured, and evaluated. Differential pulse voltammetry (DPV) measurement technique was employed in this detection. Tap water from the Cleveland, OH, USA regional water district was the test medium. Concentrations of lead ion in the range of 8 × 10-7 M to 5 × 10-4 M were evaluated, showing a good sensitivity over this concentration range. The calibration curve for the DPV measurements of lead ions in tap water showed excellent reproducibility with R² value of 0.970. This DPV detection system required 3-6 min to complete the detection measurement. A longer measurement time of 6 min was used for the lower lead ion concentration. The selectivity of this lead ion sensor was very good, and Fe III, Cu II, Ni II, and Mg II at a concentration level of 5 × 10-4 M did not interfere with the lead ion measurement.


Assuntos
Bismuto/química , Eletrodos , Ouro , Íons , Chumbo , Reprodutibilidade dos Testes , Água
9.
Sensors (Basel) ; 16(7)2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27376299

RESUMO

A single-use disposable in vitro electrochemical immunosensor for the detection of HbA1c in undiluted human serum using differential pulse voltammetry (DPV) was developed. A three-electrode configuration electrochemical biosensor consisted of 10-nm-thin gold film working and counter electrodes and a thick-film printed Ag/AgCl reference electrode was fabricated on a polyethylene terephthalate (PET) substrate. Micro-fabrication techniques including sputtering vapor deposition and thick-film printing were used to fabricate the biosensor. This was a roll-to-roll cost-effective manufacturing process making the single-use disposable in vitro HbA1c biosensor a reality. Self-assembled monolayers of 3-Mercaptopropionic acid (MPA) were employed to covalently immobilize anti-HbA1c on the surface of gold electrodes. Electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) confirmed the excellent coverage of MPA-SAM and the upward orientation of carboxylic groups. The hindering effect of HbA1c on the ferricyanide/ferrocyanide electron transfer reaction was exploited as the HbA1c detection mechanism. The biosensor showed a linear range of 7.5-20 µg/mL of HbA1c in 0.1 M PBS. Using undiluted human serum as the test medium, the biosensor presented an excellent linear behavior (R² = 0.999) in the range of 0.1-0.25 mg/mL of HbA1c. The potential application of this biosensor for in vitro measurement of HbA1c for diabetic management was demonstrated.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Hemoglobinas Glicadas/análise , Coloração e Rotulagem , Ácido 3-Mercaptopropiônico/química , Animais , Bovinos , Espectroscopia Dielétrica , Ouro/química , Humanos , Espectroscopia Fotoeletrônica , Soro/metabolismo , Processamento de Sinais Assistido por Computador
10.
Nanotechnology ; 26(13): 135706, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25764571

RESUMO

Aiming at electro-catalytic performance enhancement and reduction of catalyst cost, PtxCu1-x (Pt35Cu65, Pt53Cu47, and Pt68Cu32) nanoarchitecture samples with controllable atomic composition, similar morphology and particle-size have been prepared by using a one-pot chemical route. The as-prepared PtxCu1-x nanoarchitectures are confirmed as consisting of the integration of initial small alloy nanoparticles (NPs), resulting in an interconnected nanoporous structure. The electrochemical experiments indicate that these PtxCu1-x nanocatalysts exhibit atomic composition dependent catalytic activity, although the surfaces of all the catalysts were characterized to be featured with a Pt enrichment structure. With optimal atomic composition, the Pt35Cu65 catalyst possesses enhanced electro-catalytic activities towards methanol oxidation in comparison with other PtxCu1-x samples and pure Pt catalyst with similar morphology. Furthermore, the integrated Pt35Cu65 nanoarchitecture displays good durability during the long term electrochemical scanning through as many as 1500 cycles. The comparable catalytic performance of Pt35Cu65 catalyst could be attributed to the interconnected initial small NPs, formation of open porous structure, durable nanoarchitecture, and synergetic effect of the alloyed atoms. The structural evolution from metastable small alloy NPs to integrated stable nanoarchitectures may provide new opportunities to design and prepare novel composite materials with durable structure and effective catalytic properties.

11.
Biosensors (Basel) ; 13(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37504071

RESUMO

The essential properties of a biosensor are its sensitivity and selectivity to detect, monitor and quantify the biomarker(s) for the interests of medicine [...].


Assuntos
Técnicas Biossensoriais , Medicina , Sistemas CRISPR-Cas
12.
J Am Chem Soc ; 133(44): 17582-5, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21985430

RESUMO

Electrochemical reactions are normally initiated in solution by metal electrodes such as Pt, which are expensive and limited in supply. In this Communication, we demonstrate that an atmospheric-pressure microplasma can act as a gaseous, metal-free electrode to mediate electron-transfer reactions in aqueous solutions. Ferricyanide is reduced to ferrocyanide by plasma electrons, and the reduction rate is found to depend on discharge current. The ability to initiate and control electrochemical reactions at the plasma-liquid interface opens a new direction for electrochemistry based on interactions between gas-phase electrons and ionic solutions.

13.
Sensors (Basel) ; 10(6): 5845-58, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22219690

RESUMO

Thin film microfabrication technique was employed to fabricate a platinum based parallel-electrode structured impedance sensor. Electrochemical impedance spectroscopy (EIS) and equivalent circuit analysis of the small amplitude (±5 mV) AC impedance measurements (frequency range: 1 MHz to 0.1 Hz) at ambient temperature were carried out. Testing media include 0.001 M, 0.01 M, 0.1 M NaCl and KCl solutions, and alumina (∼3 µm) and sand (∼300 µm) particulate layers saturated with NaCl solutions with the thicknesses ranging from 0.6 mm to 8 mm in a testing cell, and the results were used to assess the effect of the thickness of the particulate layer on the conductivity of the testing solution. The calculated resistances were approximately around 20 MΩ, 4 MΩ, and 0.5 MΩ for 0.001 M, 0.01 M, and 0.1 M NaCl solutions, respectively. The presence of the sand particulates increased the impedance dramatically (6 times and 3 times for 0.001 M and 0.1 M NaCl solutions, respectively). A cell constant methodology was also developed to assess the measurement of the bulk conductivity of the electrolyte solution. The cell constant ranged from 1.2 to 0.8 and it decreased with the increase of the solution thickness.


Assuntos
Espectroscopia Dielétrica , Sistemas Microeletromecânicos/instrumentação , Microtecnologia/métodos , Impedância Elétrica , Eletroquímica/métodos , Microeletrodos , Modelos Biológicos , Pesos e Medidas
14.
Sensors (Basel) ; 10(3): 1670-8, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22294893

RESUMO

A thick-film electrochemical sensor with an iridium-carbon working electrode was used for determining polyphenols and their antioxidant capacity in white wine. Caffeic acid was used as a model species because it has the ability to produce the highest oxidation current. The correlation coefficient of 0.9975 was obtained between sensor response and caffeic acid content. The total phenolic content (TPC) and scavenging activity on 1,1-diphenyl-2-pycrylhydrazyl (DPPH·) radical were also found to be strongly correlated with the concentration of caffeic acid, with a correlation coefficient of 0.9823 and 0.9958, respectively. The sensor prototype was proven to be a simple, efficient and cost effective device to evaluate the antioxidant capacity of substances.


Assuntos
Antioxidantes/análise , Técnicas Eletroquímicas/instrumentação , Polifenóis/análise , Vinho/análise , Antioxidantes/metabolismo , Compostos de Bifenilo/química , Compostos de Bifenilo/metabolismo , Ácidos Cafeicos/análise , Ácidos Cafeicos/metabolismo , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Picratos/química , Picratos/metabolismo , Polifenóis/metabolismo
15.
Sensors (Basel) ; 10(6): 5758-73, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22219685

RESUMO

A single use, disposable iridium-nano particle contained biosensor had been developed for the determination of diglyceride (DG). In this study hydrogen peroxide, formed through the enzymatic breakdown of DG via lipase, glycerol kinase and glycerol 3-phosphate oxidase, was electrochemically oxidized at an applied potential of +0.5 V versus the Ag/AgCl reference electrode. The oxidation current was then used to quantify the diglyceride concentration. Optimum enzyme concentrations and the surfactant loading used were established for successful sensor response. Good linear performance was observed over a DG concentration range of 0 to 25 µM in phosphate buffer and bovine serum media.


Assuntos
Técnicas Biossensoriais/instrumentação , Diglicerídeos/análise , Equipamentos Descartáveis , Ensaios Enzimáticos , Irídio/química , Nanopartículas Metálicas/química , Animais , Técnicas Biossensoriais/métodos , Bovinos , Diglicerídeos/metabolismo , Ensaios Enzimáticos/instrumentação , Ensaios Enzimáticos/métodos , Enzimas Imobilizadas/metabolismo , Glicerolfosfato Desidrogenase/química , Glicerolfosfato Desidrogenase/metabolismo , Humanos , Modelos Biológicos
16.
ACS Sens ; 5(1): 140-146, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31829564

RESUMO

With the imminent needs of rapid, accurate, simple point-of-care systems for global healthcare industry, electrochemical biosensors have been widely developed owing to their cost-effectiveness and simple instrumentation. However, typical electrochemical biosensors for direct analysis of proteins in the human biological sample still suffer from complex biosensor fabrication, lack of general method, limited sensitivity, and matrix-caused biofouling effect. To resolve these challenges, we developed a general electrochemical sensing strategy based on a designed steric hindrance effect on an antibody surface layer. This strategy utilizes the interaction pattern of protein-G and immunoglobulin G (Fc and Fab regions), providing a steric hindrance effect during the target capturing process. The provided steric hindrance effect minimizes the matrix effect-caused fouling surface and altered the path of electron transfer, delivering a low-fouling and high-sensitivity detection of protein in complex matrices. Also, an enzyme-based horseradish peroxidase/hydroquinone/H2O2 transduction system can also be applied to the system, demonstrating the versatility of this sensing strategy for general electrochemical sensing applications. We demonstrated this platform through the detection of Tau protein and programming death ligand 1 with a subpico molar detection limit within 10 min, satisfying the clinical point-of-care requirements for rapid turnaround time and ultrasensitivity.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Imunoglobulina G/metabolismo , Humanos
17.
Biosens Bioelectron ; 155: 112100, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32090878

RESUMO

Robust developments of personalized medicine for next-generation healthcare highlight the need for sensitive and accurate point-of-care platforms for quantification of disease biomarkers. Broad presentations of clustered regularly interspaced short palindromic repeats (CRISPR) as an accurate gene editing tool also indicate that the high-specificity and programmability of CRISPR system can be utilized for the development of biosensing systems. Herein, we present a CRISPR Cas system enhanced electrochemical DNA (E-DNA) sensor with unprecedented sensitivity and accuracy. The principle of the E-DNA sensor is the target induced conformational change of the surface signaling probe (containing an electrochemical tag), leading to the variation of the electron transfer rate of the electrochemical tag. With the introduction of CRISPR cleavage activity into the E-DNA sensor, a more apparent signal change between with and without the presence of the target can be achieved. We compared the performance of Cas9 and Cas12a enhanced E-DNA sensor and optimized the chemical environment of CRISPR, achieving a femto-molar detection limit without enzymatic amplification. Moreover, we correlated the CRISPR cleavage signal with the original E-DNA signal as a strategy to indicate potential mismatches in the target sequence. Comparing with classic DNA electrochemistry based mutation detection strategy, CRISPR enhanced E-DNA sensor can determine the presence of a single mutation at an unknown concentration condition. Overall, we believe that the CRISPR enhanced E-DNA sensing strategy will be of especially high utility for point-of-care systems owing to the programmability, modularity, high-sensitivity and high-accuracy.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , DNA/análise , Técnicas Eletroquímicas , Edição de Genes , Humanos , Limite de Detecção , RNA Guia de Cinetoplastídeos/genética , Reprodutibilidade dos Testes
18.
Analyst ; 134(5): 973-9, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19381393

RESUMO

An electrochemical sensor, based on thick-film screen-printed Ir/C working and counter electrodes, was developed for the detection of total bile acid concentration in a physiological fluid for potential patient management in patients with liver disease. Current electrochemical methods of detecting total bile acid levels involve the use of potentials greater than +0.45 V, versus an Ag/AgCl reference electrode, and require a selectively permeable membrane. The proposed detection method did not require any membrane and used a potential of +0.27 V versus Ag/AgCl. This biosensor used 3-alpha-hydroxysteroid dehydrogenase (3alpha-HSD) (EC 1.1.1.50) immobilized on the thick-film screen-printed working electrode to detect the enzymatically generated NADH. The production of the NADH resulted from the reaction of the enzyme with bile acids such as sodium cholate, taurocholic and taurochenodeoxycholic acid, which could then be used to quantify the total bile acid. Constant potential measurements showed that this biosensor had good linear performance over a 0-200 microM concentration range in the phosphate buffer and the bovine serum. The sensor performance was also examined at different temperatures and pH conditions. This sensor prototype could be used for single use, disposable detection of total bile acids, extending its applicability for simple and early detection of liver disease.


Assuntos
Ácidos e Sais Biliares/química , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Hepatopatias/diagnóstico , 3-alfa-Hidroxiesteroide Desidrogenase (B-Específica) , Animais , Eletrodos , Enzimas Imobilizadas , Concentração de Íons de Hidrogênio , NAD/química , Temperatura
19.
Sensors (Basel) ; 9(11): 8709-21, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22291532

RESUMO

A one-step, single use, disposable Alkaline Phosphatase (ALP) biosensor has been developed. It is based on the detection of phenol produced by an ALP enzymatic reaction. It can operate at 25 °C in a pH 10 medium. It measures ALP of 0-300 IU/L. The permissible concentrations of glucose, ascorbic acid and urea without interference are 10 mM/L, 5 mg/L and 400 mg/L, respectively. Experimental results are compared to those obtained by spectrophotometric measurements in bovine serum. Excellent linearity between the biosensor outputs and the ALP concentrations exists. The agreement between the measurements of this biosensor and the spectrophotometer is also outstanding.

20.
Sensors (Basel) ; 9(9): 7203-16, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22399993

RESUMO

A three-electrode based CO(2) sensor was fabricated using thick-film technology. The performance of this sensor was further enhanced by incorporating platinum nanoparticles onto the working electrode surface. An eight-fold increase in the signal output was obtained from the electrode with the platinum nanoparticles. The sensing output was linearly related to the CO(2) presented. Stability measurements demonstrated that the decline of the active surface area and the sensitivity of the sensor were 8% and 13%, respectively, over a two week period of time. The sensor response appeared to be a structural dependence of the crystallographic orientation of platinum electrode.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA