RESUMO
Neuromyelitis optica spectrum disorder (NMOSD) is a severe inflammatory autoimmune disease of the central nervous system that is manifested as secondary myelin loss. Oligodendrocyte progenitor cells (OPCs) are the principal source of myelinating oligodendrocytes (OLs) and are abundant in demyelinated regions of NMOSD patients, thus possibly representing a cellular target for pharmacological intervention. To explore the therapeutic compounds that enhance myelination due to endogenous OPCs, we screened the candidate drugs in mouse neural progenitor cell (NPC)-derived OPCs. We identified drug edaravone, which is approved by the Food and Drug Administration (FDA), as a promoter of OPC differentiation into mature OLs. Edaravone enhanced remyelination in organotypic slice cultures and in mice, even when edaravone was administered following NMO-IgG-induced demyelination, and ameliorated motor impairment in a systemic mouse model of NMOSD. The results of mechanistic studies in NMO-IgG-treated mice and the biopsy samples of the brain tissues of NMOSD patients indicated that the mTORC1 signaling pathway was significantly inhibited, and edaravone promoted OPC maturation and remyelination by activating mTORC1 signaling. Furthermore, pharmacological activation of mTORC1 signaling significantly enhanced myelin regeneration in NMOSD. Thus, edaravone is a potential therapeutic agent that promotes lesion repair in NMOSD patients by enhancing OPC maturation.
Assuntos
Neuromielite Óptica , Remielinização , Animais , Camundongos , Remielinização/fisiologia , Neuromielite Óptica/tratamento farmacológico , Edaravone/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Diferenciação Celular/fisiologia , Transdução de Sinais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Imunoglobulina GRESUMO
BACKGROUND: Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe autoimmune neuropsychiatric disease. Brain access of anti-NMDAR autoantibody through the blood-brain barrier (BBB) is essential for pathogenesis. Most previous animal models limit the investigation of etiologies of BBB damage in patients. METHODS: In this study, we established a novel humanized mouse model of anti-NMDAR encephalitis by intraperitoneal injection of patients' peripheral blood mononuclear cells (PBMCs) into BALB/c Rag2-/-Il2rg-/-SirpαNODFlk2-/- mice. RESULTS: We found that engraftment of patients' PBMCs not only produced potent anti-GluN1 autoantibodies, but also disrupted BBB integrity to allow brain access of autoantibodies, resulting in a hyperactive locomotor phenotype, anxiety- and depressive-like behaviors, cognitive deficits, as well as functional changes in corresponding brain regions. Transcriptome analysis suggested an exaggerated immune response and impaired neurotransmission in the mouse model and highlighted Il-1ß as a hub gene implicated in pathological changes. We further demonstrated that Il-1ß was produced by endothelial cells and disrupted BBB by repressing tight junction proteins. Treatment with Anakinra, an Il-1 receptor antagonist, ameliorated BBB damage and neuropsychiatric behaviors. CONCLUSIONS: Our study provided a novel and clinically more relevant humanized mouse model of anti-NMDAR encephalitis and revealed an intrinsic pathogenic property of the patient's lymphocytes.
Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Animais , Camundongos , Barreira Hematoencefálica , Leucócitos Mononucleares , Células Endoteliais , Camundongos Endogâmicos NOD , Autoanticorpos , Modelos Animais de Doenças , Receptores de N-Metil-D-AspartatoRESUMO
Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) causes major disability as a consequence of recurrent demyelinating events and neuronal loss. Biomarkers identifying different phenotypes of recurrence or tissue damage might be useful to guide individualized therapy. Herein, we evaluated serum neurofilament light chain (sNfL) as a potential biomarker in both adult and pediatric MOGAD patients. Forty-nine patients with MOGAD (37 adults, 12 children) and 71 healthy controls (HCs) (56 adults, 15 children) were enrolled prospectively from September 2019 to April 2021 at the Third Affiliated Hospital of Sun Yat-sen University and the Children's Hospital, Zhejiang University School of Medicine. sNfL levels were determined using ultrasensitive single-molecule array assay and correlated with clinical parameters. The sNfL levels in MOGAD adults in a relapsed state (median: 31.0 pg/ml) were higher than those in a remission state (8.1 pg/ml, p = 0.001) and in HC adults (10.3 pg/ml, p = 0.004). Similar results were observed in children (relapse: 46.8 pg/ml vs. remission: 13.1 pg/ml, p = 0.001; and vs. HCs: 8.2 pg/ml, p = 0.007) sNfL levels were correlated with recent relapses within 60 days (multivariate: ß = 2.02, p = 0.003), seizures (multivariate: ß = 2.50, p = 0.021) and brain lesions on magnetic resonance imaging (MRI) of a recent relapse (multivariate: ß = 1.72, p = 0.012). Our study showed that sNfL levels are beneficial for identifying recent relapses and seizures and suggest that adult and pediatric MOGAD patients had similar sNfL levels.
Assuntos
Filamentos Intermediários , Proteínas de Neurofilamentos , Biomarcadores , Criança , Humanos , Glicoproteína Mielina-Oligodendrócito , Recidiva , ConvulsõesRESUMO
BACKGROUND: Leaves, which are the most important organs of plants, can not only fix carbon sources through photosynthesis, but also absorb nutrients through transpiration. Leaf development directly determines the growth, flowering and fruiting of plants. There are many factors that affect leaf development, such as the growth environment, gene expression, and hormone synthesis. In this study, tomatoes were used to study the role of the transcription factor Solanum lycopersicum salt-related MYB1-like (SlSRM1-like) in the development of tomato leaves. RESULTS: Loss-of-function of the SlSRM1-like gene mediated by clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated 9 (Cas9) resulted in abnormal tomato leaf morphology, including thinner leaves, wrinkled edges, raised veins, disordered edge veins, and left and right asymmetry. An analysis of the transcription levels of genes related to leaf development revealed that the expression of these genes was significantly altered in the SlSRM1-like mutants (SlSRM1-like-Ms). Moreover, the SlSRM1-like gene was expressed at higher transcription levels in young tissues than in old tissues, and its expression was also induced in response to auxin. In addition, the transcription levels of genes related to the auxin pathway, which regulates tomato growth and development, were severely affected in the SlSRM1-like-Ms. Therefore, it is hypothesized that the SlSRM1-like gene functions in the regulation of tomato leaf development through the auxin-related pathway. CONCLUSIONS: In this study, we successfully knocked out the SlSRM1-like gene in the tomato variety Ailsa Craig using CRISPR technology and found that knockout of the SlSRM1-like gene resulted in abnormal development of tomato leaves. Further research indicated that SlSRM1-like regulated tomato leaf development through auxin-related pathways. The results provide an important reference for the functional study of other SRM1-like genes in plants and provide new insights into the regulation of leaf development in tomato and other plants.
Assuntos
Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Sistemas CRISPR-Cas , Solanum lycopersicum , Mutagênese , Folhas de Planta/genética , Proteínas de Plantas/metabolismoRESUMO
BACKGROUND AND PURPOSE: Preventing relapse by immunosuppressants (ISs) is critical for the prognosis of neuromyelitis optica spectrum disorder (NMOSD); however, the optimal duration of IS treatment is still under discussion. The objective was to explore the optimal duration of IS treatment and the risk of IS discontinuation for NMOSD. METHOD: This cohort study was conducted at a major neurological center that housed the largest NMOSD database in South China. Eligible participants were patients with NMOSD undergoing IS treatment. The main outcome measures were changes in relapse risk based on IS treatment duration, clinical outcomes and predictors of relapse following IS discontinuation. RESULTS: In total, 343 patients were included in this study. The duration of IS treatment was strongly associated with a decrease in relapse risk (hazard ratio [HR] 0.53, p < 0.001). Continuous IS treatment resulted in decreased relapse HRs within 5 years of receiving IS medication, with a mild rebound starting at 5 years. Rituximab reduced the risk of NMOSD relapse to approximately zero within 3 years. The rate of relapse after IS withdrawal was high (77.5%). As opposed to other ISs, a delayed relapse following rituximab withdrawal was observed in this study. Longitudinal extensive transverse myelitis (HR = 2.023, p = 0.006) was associated with a higher risk of relapse after IS discontinuation. CONCLUSIONS: Long-term IS medication for NMOSD is generally suitable. Patients with longitudinal extensive transverse myelitis had a higher risk of relapse after IS discontinuation. Future studies should explore individualized strategies of rituximab maintenance treatment.
Assuntos
Mielite Transversa , Neuromielite Óptica , Aquaporina 4 , Estudos de Coortes , Duração da Terapia , Humanos , Imunossupressores/uso terapêutico , Recidiva Local de Neoplasia , Neuromielite Óptica/tratamento farmacológico , Estudos Retrospectivos , Rituximab/uso terapêuticoRESUMO
To determine the relationship between basal metabolic rate (BMR) and multiple sclerosis (MS) susceptibility, we analyzed genome-wide association study (GWAS) summary statistics data from the International Multiple Sclerosis Genetics Consortium on a total of 115,803 participants of European descent, including 47,429 patients with MS and 68,374 controls. We selected 378 independent genetic variants strongly associated with BMR in a GWAS involving 454,874 participants as instrumental variables to examine a potential causal relationship between BMR and MS. A genetically predicted higher BMR was associated with a greater risk of MS (odds ratio [OR]: 1.283 per one standard deviation increase in BMR, 95% confidence interval [CI]: 1.108-1.486, P = 0.001). Moreover, we used the lasso method to eliminate heterogeneity (Q statistic = 384.58, P = 0.370). There was no pleiotropy in our study and no bias was found in the sensitivity analysis using the leave-one-out test. We provide novel evidence that a higher BMR is an independent causal risk factor in the development of MS. Further work is warranted to elucidate the potential mechanisms.
Assuntos
Estudo de Associação Genômica Ampla , Esclerose Múltipla , Metabolismo Basal/genética , Humanos , Análise da Randomização Mendeliana , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único/genéticaRESUMO
We investigated the serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP) levels in a cohort of Chinese patients with neuromyelitis optica spectrum disorders (NMOSD) and multiple sclerosis (MS) in relation to clinical disease course and treatment. sNfL and sGFAP levels were determined by ultrasensitive single molecule array (Simoa) assay in patients with NMOSD (n = 102) and MS (n = 98) and healthy controls (HCs; n = 84). Notably, 13 patients with NMOSD and 27 patients with MS were enrolled in the 1-year follow-up cohort. Levels were compared with data such as clinical course, disease duration, Expanded Disability Status Scale (EDSS) score, and lesions on MRI. Higher levels of sNfL and sGFAP were found in subjects with NMOSD and MS than in HCs (sNfL, median 12.11, 17.5 vs. 8.88 pg/ml, p < .05; sGFAP, median 130.2, 160.4 vs. 80.01 pg/ml, p < .05). Moreover, sNfL levels were higher in the relapse phase of MS than in the relapse phase of NMOSD (30.02 vs. 14.57 pg/ml, p < .05); sGFAP levels were higher in the remission phase of MS than in the remission phase of NMOSD (159.8 vs. 124.5 pg/ml, p < .01). A higher sGFAP/sNfL quotient at relapse differentiated NMOSD from MS. Multivariate analyses indicated that sGFAP levels were associated with the EDSS score in NMOSD (p < .05). At the 1-year follow-up, sNfL and sGFAP levels were both decreased in NMOSD patients in remission, while only sNfL levels were decreased in MS patients in remission. sGFAP and sNfL are potential blood biomarkers for diagnosing and monitoring NMOSD and MS.
Assuntos
Aquaporina 4/sangue , Proteína Glial Fibrilar Ácida/sangue , Imunoglobulina G/sangue , Esclerose Múltipla/sangue , Proteínas de Neurofilamentos/sangue , Neuromielite Óptica/sangue , Adulto , Biomarcadores/sangue , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico , Neuromielite Óptica/diagnóstico , Estudos RetrospectivosRESUMO
P-type ATPases are integral membrane transporters that play important roles in transmembrane transport in plants. However, a comprehensive analysis of the P-type ATPase gene family has not been conducted in Chinese white pear (Pyrus bretschneideri) or other Rosaceae species. Here, we identified 419 P-type ATPase genes from seven Rosaceae species (Pyrus bretschneideri, Malus domestica, Prunus persica, Fragaria vesca, Prunus mume, Pyrus communis and Pyrus betulifolia). Structural and phylogenetic analyses revealed that P-type ATPase genes can be divided into five subfamilies. Different subfamilies have different conserved motifs and cis-acting elements, which may lead to functional divergence within one gene family. Dispersed duplication and whole-genome duplication may play critical roles in the expansion of the P-type ATPase family. Purifying selection was the primary force driving the evolution of P-type ATPase family genes. Based on the dynamic transcriptome analysis and transient transformation of Chinese white pear fruit, Pbr029767.1 in the P3A subfamily were found to be associated with malate accumulation during pear fruit development. Using a co-expression network, we identified several transcription factors that may have regulatory relationships with the P-type ATPase gene family. Overall, this study lays a solid foundation for understanding the evolution and functions of P-type ATPase genes in Chinese white pear and six other Rosaceae species.
Assuntos
ATPases do Tipo-P/genética , Proteínas de Plantas/genética , Pyrus/genética , Mapeamento Cromossômico , Evolução Molecular , Duplicação Gênica , Redes Reguladoras de Genes , Malatos/metabolismo , Família Multigênica , Motivos de Nucleotídeos , ATPases do Tipo-P/classificação , ATPases do Tipo-P/metabolismo , Proteínas de Plantas/classificação , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Pyrus/crescimento & desenvolvimento , Pyrus/metabolismo , Rosaceae/genéticaRESUMO
Alcohol dehydrogenase (ADH) is essential to the formation of aromatic compounds in fruits. However, the evolutionary history and characteristics of ADH gene expression remain largely unclear in Rosaceae fruit species. In this study, 464 ADH genes were identified in eight Rosaceae fruit species, 68 of the genes were from pear and which were classified into four subgroups. Frequent single gene duplication events were found to have contributed to the formation of ADH gene clusters and the expansion of the ADH gene family in these eight Rosaceae species. Purifying selection was the major force in ADH gene evolution. The younger genes derived from tandem and proximal duplications had evolved faster than those derived from other types of duplication. RNA-Seq and qRT-PCR analysis revealed that the expression levels of three ADH genes were closely correlated with the content of aromatic compounds detected during fruit development.
Assuntos
Álcool Desidrogenase/genética , Família Multigênica , Pyrus/genética , Rosaceae/genética , Álcool Desidrogenase/classificação , Álcool Desidrogenase/metabolismo , Cromossomos de Plantas , Evolução Molecular , Duplicação Gênica , Genes de Plantas , Genoma de Planta , Filogenia , Pyrus/enzimologia , Rosaceae/classificação , Rosaceae/enzimologia , Sintenia , TranscriptomaRESUMO
Phytophthora infestans (P. infestans) recently caused epidemics of tomato late blight. Our study aimed to identify the function of the SlMYBS2 gene in response to tomato late blight. To further investigate the function of SlMYBS2 in tomato resistance to P. infestans, we studied the effects of SlMYBS2 gene knock out. The SlMYBS2 gene was knocked out by CRISPR-Cas9, and the resulting plants (SlMYBS2 gene knockout, slmybs2-c) showed reduced resistance to P. infestans, accompanied by increases in the number of necrotic cells, lesion sizes, and disease index. Furthermore, after P. infestans infection, the expression levels of pathogenesis-related (PR) genes in slmybs2-c plants were significantly lower than those in wild-type (AC) plants, while the number of necrotic cells and the accumulation of reactive oxygen species (ROS) were higher than those in wild-type plants. Taken together, these results indicate that SlMYBS2 acts as a positive regulator of tomato resistance to P. infestans infection by regulating the ROS level and the expression level of PR genes.
Assuntos
Resistência à Doença/genética , Phytophthora infestans/patogenicidade , Doenças das Plantas/parasitologia , Solanum lycopersicum/parasitologia , Fatores de Transcrição/genética , Sistemas CRISPR-Cas , Regulação da Expressão Gênica de Plantas/genética , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Espécies Reativas de Oxigênio/metabolismoRESUMO
The plant disease resistance system involves a very complex regulatory network in which jasmonates play a key role in response to external biotic or abiotic stresses. As inhibitors of the jasmonic acid (JA) signaling pathway, JASMONATE ZIM domain (JAZ) proteins have been identified in many plant species, and their functions are gradually being clarified. In this study, 26 JAZ genes were identified in tomato. The physical and chemical properties, predicted subcellular localization, gene structure, cis-acting elements, and interspecies collinearity of 26 SlJAZ genes were subsequently analyzed. RNA-seq data combined with qRT-PCR analysis data showed that the expression of most SlJAZ genes were induced in response to Stemphylium lycopersici, methyl jasmonate (MeJA) and salicylic acid (SA). Tobacco rattle virus RNA2-based VIGS vector (TRV2)-SlJAZ25 plants were more resistant to tomato gray leaf spots than TRV2-00 plants. Therefore, we speculated that SlJAZ25 played a negative regulatory role in tomato resistance to gray leaf spots. Based on combining the results of previous studies and those of our experiments, we speculated that SlJAZ25 might be closely related to JA and SA hormone regulation. SlJAZ25 interacted with SlJAR1, SlCOI1, SlMYC2, and other resistance-related genes to form a regulatory network, and these genes played an important role in the regulation of tomato gray leaf spots. The subcellular localization results showed that the SlJAZ25 gene was located in the nucleus. Overall, this study is the first to identify and analyze JAZ family genes in tomato via bioinformatics approaches, clarifying the regulatory role of SlJAZ25 genes in tomato resistance to gray leaf spots and providing new ideas for improving plant disease resistance.
Assuntos
Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Família Multigênica , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Cromossomos de Plantas/genética , Duplicação Gênica , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Inativação Gênica , Genes de Plantas , Filogenia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Frações Subcelulares/metabolismo , Sintenia/genéticaRESUMO
BACKGROUND: The BAHD acyltransferase superfamily exhibits various biological roles in plants, including regulating fruit quality, catalytic synthesizing of terpene, phenolics and esters, and improving stress resistance. However, the copy numbers, expression characteristics and associations with fruit aroma formation of the BAHD genes remain unclear. RESULTS: In total, 717 BAHD genes were obtained from the genomes of seven Rosaceae, (Pyrus bretschneideri, Malus domestica, Prunus avium, Prunus persica, Fragaria vesca, Pyrus communis and Rubus occidentalis). Based on the detailed phylogenetic analysis and classifications in model plants, we divided the BAHD family genes into seven groups, I-a, I-b, II-a, II-b, III-a, IV and V. An inter-species synteny analysis revealed the ancient origin of BAHD superfamily with 78 syntenic gene pairs were detected among the seven Rosaceae species. Different types of gene duplication events jointly drive the expansion of BAHD superfamily, and purifying selection dominates the evolution of BAHD genes supported by the small Ka/Ks ratios. Based on the correlation analysis between the ester content and expression levels of BAHD genes at different developmental stages, four candidate genes were selected for verification as assessed by qRT-PCR. The result implied that Pbr020016.1, Pbr019034.1, Pbr014028.1 and Pbr029551.1 are important candidate genes involved in aroma formation during pear fruit development. CONCLUSION: We have thoroughly identified the BAHD superfamily genes and performed a comprehensive comparative analysis of their phylogenetic relationships, expansion patterns, and expression characteristics in seven Rosaceae species, and we also obtained four candidate genes involved in aroma synthesis in pear fruit. These results provide a theoretical basis for future studies of the specific biological functions of BAHD superfamily members and the improvement of pear fruit quality.
Assuntos
Aciltransferases/genética , Frutas/genética , Pyrus , Rosaceae/genética , Compostos Orgânicos Voláteis/metabolismo , Aciltransferases/metabolismo , Evolução Molecular , Duplicação Gênica , Perfilação da Expressão Gênica , Genoma de Planta , Odorantes , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pyrus/genética , Pyrus/metabolismo , Sintenia/genéticaRESUMO
OBJECTIVE: Myelin oligodendrocyte glycoprotein-associated disorders (MOGADs) are a rare new neurological autoimmune disease with unclear pathogenesis. Since a linkage of the disease to the human leucocyte antigen (HLA) has not been shown, we here investigated whether MOGAD is associated with the HLA locus. METHODS: HLA genotypes of 95 patients with MOGADs, assessed between 2016 and 2018 from three academic centres, were compared with 481 healthy Chinese Han individuals. Patients with MOGADs included 51 paediatric-onset and 44 adult-onset cases. All patients were seropositive for IgG targeting the myelin oligodendrocyte glycoprotein (MOG). RESULTS: Paediatric-onset MOGAD was associated with the DQB1*05:02-DRB1*16:02 alleles (OR=2.43; OR=3.28) or haplotype (OR=2.84) of HLA class II genes. The prevalence of these genotypes in patients with paediatric-onset MOGAD was significantly higher than healthy controls (padj=0.0154; padj=0.0221; padj=0.0331). By contrast, adult-onset MOGAD was not associated with any HLA genotype. Clinically, patients with the DQB1*05:02-DRB1*16:02 haplotype exhibited significantly higher expanded disability status scale scores at onset (p=0.004) and were more likely to undergo a disease relapse (p=0.030). HLA-peptide binding prediction algorithms and computational docking analysis provided supporting evidence for the close relationship between the MOG peptide subunit and DQB1*05:02 allele. In vitro results indicated that site-specific mutations of the predicted target sequence reduced the antigen-antibody binding, especially in the paediatric-onset group with DQB1*05:02 allele. CONCLUSIONS: This study demonstrates a possible association between specific HLA class II alleles and paediatric-onset MOGAD, providing evidence for the conjecture that different aetiology and pathogenesis likely underlie paediatric-onset and adult-onset cases of MOGAD.
Assuntos
Doenças Autoimunes/genética , Genótipo , Antígenos HLA/genética , Glicoproteína Mielina-Oligodendrócito/imunologia , Adolescente , Adulto , Idoso , Alelos , Doenças Autoimunes/imunologia , Criança , Pré-Escolar , China , Estudos de Coortes , Feminino , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
We examined the prevalence of sex with older male partner (SWOMP) and its association with condomless anal intercourse (CAI) with male partners and unrecognized HIV infection among young men who have sex with men (MSM) in Shanghai, China. The analytic sample included 243 MSM who were 18-45 years and HIV negative or of unknown HIV serostatus. Older male partner refers to male sex partner who was at least 10 years older than themselves. Overall, 99 (43.0%) and 50 (20.7%) reported having SWOMP in lifetime and in the last 3 months, respectively. Having any CAI with male partners in the last 3 months was independently associated with SWOMP and sex with stable male partners in the last 3 months. Unrecognized HIV infection was independently associated with being HSV-2 positive and having any CAI with male partners as well as SWOMP in last 3 months. Sex with stable male partner in the last 3 months was also marginally significantly associated with unrecognized infection (p = 0.084). Older partner selection is common among young MSM in China. Prevention programs should incorporate education messages about the HIV risk associated with SWOMP. MSM should be informed that having condomless sex with stable partners may place them at HIV risk.
Assuntos
Povo Asiático/psicologia , Infecções por HIV/psicologia , Homossexualidade Masculina/etnologia , Comportamento Sexual , Parceiros Sexuais , Sexo sem Proteção/psicologia , Adolescente , Adulto , China/epidemiologia , Infecções por HIV/epidemiologia , Infecções por HIV/transmissão , Homossexualidade Masculina/psicologia , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Adulto JovemAssuntos
Coriorretinopatia Serosa Central , Neuromielite Óptica , Coriorretinopatia Serosa Central/induzido quimicamente , Coriorretinopatia Serosa Central/diagnóstico por imagem , Humanos , Neuromielite Óptica/complicações , Neuromielite Óptica/diagnóstico por imagem , Neuromielite Óptica/tratamento farmacológico , Esteroides/efeitos adversosRESUMO
The pathogenesis of osteosarcoma involves complex genetic and epigenetic factors. This study was to explore the impact and clinical relevance of long non-coding RNA (lncRNA), Taurine up-regulated gene 1 (TUG1) on patients with osteosarcoma. Seventy-six osteosarcoma tissues and matched adjacent normal tissues were included for analysis. The plasma samples were obtained from 29 patients with osteosarcoma at pre-operation and post-operation, 42 at newly diagnosed, 18 who experienced disease progression or relapse, 45 post-treatment, 36 patients with benign bone tumor, and 20 healthy donors. Quantitative real-time reverse transcript polymerase chain reactions were used to assess the correlation of the expression levels of TUG1 with clinical parameters of osteosarcoma patients. TUG1 was significantly overexpressed in the osteosarcoma tissues compared with matched adjacent normal tissues (P < 0.01) and was closely correlated with tumor size, post-operative chemotherapy, and Enneking surgical stage. Upregulation of TUG1 strongly correlated with poor prognosis and was an independent prognostic indicator for overall survival (HR = 2.78, 95% CI = 1.29-6.00, P = 0.009) and progression-free survival (HR = 1.81, 95% CI = 1.01-3.54, P = 0.037). Our constructed nomogram containing TUG1 had more predictive accuracy than that without TUG1 (c-index 0.807 versus 0.776, respectively). In addition, for plasma samples, TUG1 expression levels were obviously decreased in post-operative patients (mean ΔCT -4.98 ± 0.22) compared with pre-operation patients (mean ΔCT -6.09 ± 0.74), and the changes of TUG1 expression levels were significantly associated with disease status. Receiver operating characteristic (ROC) curve analysis demonstrated that TUG1 could distinguish patients with osteosarcoma from healthy individuals compared with alkaline phosphatase (ALP) (the area under curve 0.849 versus 0.544). TUG1 was overexpressed in patients with osteosarcoma and strongly correlated with disease status. In addition, TUG1 may serve as a molecular indicator in maintaining surveillance and forecasting prognosis.
Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Ósseas/genética , Osteossarcoma/genética , RNA Longo não Codificante/sangue , Adolescente , Adulto , Fosfatase Alcalina/metabolismo , Área Sob a Curva , Biomarcadores Tumorais/genética , Neoplasias Ósseas/sangue , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/mortalidade , Estudos de Casos e Controles , Intervalo Livre de Doença , Feminino , Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Osteossarcoma/sangue , Osteossarcoma/diagnóstico , Osteossarcoma/mortalidade , Prognóstico , Modelos de Riscos Proporcionais , RNA Longo não Codificante/genética , Curva ROC , Regulação para Cima , Adulto JovemRESUMO
Rapid manufacturing of high purity fused silica glass micro-optics using a filament-based glass 3D printer has been demonstrated. A multilayer 5 × 5 microlens array was printed and subsequently characterized, showing fully dense lenses with uniform focal lengths and good imaging performance. A surface roughness on the order of Ra = 0.12 nm was achieved. Printing time for each lens was <10 s. Creating arrays with multifocal imaging capabilities was possible by individually varying the number of printed layers and radius for each lens, effectively changing the lens height and curvature. Glass 3D printing is shown in this study to be a versatile approach for fabricating silica micro-optics suitable for rapid prototyping or manufacturing.
RESUMO
Cognitive dysfunction is a feature in multiple sclerosis (MS), a chronic inflammatory demyelinating disorder. A notable aspect of MS brains is hippocampal demyelination, which is closely associated with cognitive decline. However, the mechanisms underlying this phenomenon remain unclear. Chitinase-3-like (CHI3L1), secreted by activated astrocytes, has been identified as a biomarker for MS progression. Our study investigates CHI3L1's function within the demyelinating hippocampus and demonstrates a correlation between CHI3L1 expression and cognitive impairment in patients with MS. Activated astrocytes release CHI3L1 in reaction to induced demyelination, which adversely affects the proliferation and differentiation of neural stem cells and impairs dendritic growth, complexity, and spine formation in neurons. Our findings indicate that the astrocytic deletion of CHI3L1 can mitigate neurogenic deficits and cognitive dysfunction. We showed that CHI3L1 interacts with CRTH2/receptor for advanced glycation end (RAGE) by attenuating ß-catenin signaling. The reactivation of ß-catenin signaling can revitalize neurogenesis, which holds promise for therapy of inflammatory demyelination.
Assuntos
Astrócitos , Proteína 1 Semelhante à Quitinase-3 , Cognição , Hipocampo , Neurogênese , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Astrócitos/metabolismo , beta Catenina/metabolismo , Diferenciação Celular , Proliferação de Células , Proteína 1 Semelhante à Quitinase-3/metabolismo , Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Células-Tronco Neurais/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismoRESUMO
Multiple sclerosis (MS) is a debilitating demyelinating disease characterized by remyelination failure attributed to inadequate oligodendrocyte precursor cells (OPCs) differentiation and aberrant astrogliosis. A comprehensive cell atlas reanalysis of clinical specimens brings to light heightened clusterin (CLU) expression in a specific astrocyte subtype links to active lesions in MS patients. Our investigation reveals elevated astrocytic CLU levels in both active lesions of patient tissues and female murine MS models. CLU administration stimulates primary astrocyte proliferation while concurrently impeding astrocyte-mediated clearance of myelin debris. Intriguingly, CLU overload directly impedes OPC differentiation and induces OPCs and OLs apoptosis. Mechanistically, CLU suppresses PI3K-AKT signaling in primary OPCs via very low-density lipoprotein receptor. Pharmacological activation of AKT rescues the damage inflicted by excess CLU on OPCs and ameliorates demyelination in the corpus callosum. Furthermore, conditional knockout of CLU emerges as a promising intervention, showcasing improved remyelination processes and reduced severity in murine MS models.