Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 627(8003): 313-320, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480964

RESUMO

Intrinsically stretchable electronics with skin-like mechanical properties have been identified as a promising platform for emerging applications ranging from continuous physiological monitoring to real-time analysis of health conditions, to closed-loop delivery of autonomous medical treatment1-7. However, current technologies could only reach electrical performance at amorphous-silicon level (that is, charge-carrier mobility of about 1 cm2 V-1 s-1), low integration scale (for example, 54 transistors per circuit) and limited functionalities8-11. Here we report high-density, intrinsically stretchable transistors and integrated circuits with high driving ability, high operation speed and large-scale integration. They were enabled by a combination of innovations in materials, fabrication process design, device engineering and circuit design. Our intrinsically stretchable transistors exhibit an average field-effect mobility of more than 20 cm2 V-1 s-1 under 100% strain, a device density of 100,000 transistors per cm2, including interconnects and a high drive current of around 2 µA µm-1 at a supply voltage of 5 V. Notably, these achieved parameters are on par with state-of-the-art flexible transistors based on metal-oxide, carbon nanotube and polycrystalline silicon materials on plastic substrates12-14. Furthermore, we realize a large-scale integrated circuit with more than 1,000 transistors and a stage-switching frequency greater than 1 MHz, for the first time, to our knowledge, in intrinsically stretchable electronics. Moreover, we demonstrate a high-throughput braille recognition system that surpasses human skin sensing ability, enabled by an active-matrix tactile sensor array with a record-high density of 2,500 units per cm2, and a light-emitting diode display with a high refreshing speed of 60 Hz and excellent mechanical robustness. The above advancements in device performance have substantially enhanced the abilities of skin-like electronics.


Assuntos
Desenho de Equipamento , Pele , Transistores Eletrônicos , Dispositivos Eletrônicos Vestíveis , Humanos , Silício , Nanotubos de Carbono , Tato
3.
Cardiol Young ; : 1-6, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38577783

RESUMO

OBJECTIVE: Head-up tilt test (HUTT) is an important tool in the diagnosis of pediatric vasovagal syncope. This research will explore the relationship between syncopal symptoms and HUTT modes in pediatric vasovagal syncope. METHODS: A retrospective analysis was performed on the clinical data of 2513 children aged 3-18 years, who were diagnosed with vasovagal syncope, from Jan. 2001 to Dec. 2021 due to unexplained syncope or pre-syncope. The average age was 11.76 ± 2.83 years, including 1124 males and 1389 females. The patients were divided into the basic head-up tilt test (BHUT) group (596 patients) and the sublingual nitroglycerine head-up tilt test (SNHUT) group (1917 patients) according to the mode of positive HUTT at the time of confirmed pediatric vasovagal syncope. RESULTS: (1) Baseline characteristics: Age, height, weight, heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and composition ratio of syncope at baseline status were higher in the BHUT group than in the SNHUT group (all P < 0.05). (2) Univariate analysis: Age, height, weight, HR, SBP, DBP, and syncope were potential risk factors for BHUT positive (all P < 0.05). (3) Multivariate analysis: syncope was an independent risk factor for BHUT positive, with a probability increase of 121% compared to pre-syncope (P<0.001). CONCLUSION: The probability of BHUT positivity was significantly higher than SNHUT in pediatric vasovagal syncope with previous syncopal episodes.

4.
Molecules ; 29(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38611832

RESUMO

In order to expand the application of bismuth vanadate (BiVO4) to the field of photoelectrochemistry, researchers have explored the potential of BiVO4 in catalyzing or degrading organic substances, potentially presenting a green and eco-friendly solution. A study was conducted to investigate the impact of electrolytes on the photocatalysis of benzyl alcohol by BiVO4. The research discovered that, in an acetonitrile electrolyte (pH 9) with sodium bicarbonate, BiVO4 catalyzed benzyl alcohol by introducing saturated V5+. This innovation addressed the issue of benzyl alcohol being susceptible to catalysis in an alkaline setting, as V5+ was prone to dissolution in pH 9 on BiVO4. The concern of the photocorrosion of BiVO4 was mitigated through two approaches. Firstly, the incorporation of a non-aqueous medium inhibited the formation of active material intermediates, reducing the susceptibility of the electrode surface to photocorrosion. Secondly, the presence of saturated V5+ further deterred the leaching of V5+. Concurrently, the production of carbonate radicals by bicarbonate played a vital role in catalyzing benzyl alcohol. The results show that, in this system, BiVO4 has the potential to oxidize benzyl alcohol by photocatalysis.

5.
Small ; 19(11): e2206763, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36599667

RESUMO

To fabricate a high-efficiency bulk-heterojunction (BHJ)-based photocathode, introducing suitable interfacial modification layer(s) is a crucial strategy. Surface engineering is especially important for achieving high-performance photocathodes because the photoelectrochemical (PEC) reactions at the photocathode/electrolyte interface are the rate-limiting process. Despite its importance, the influence of interfacial layer morphology regulation on PEC activity has attracted insufficient attention. In this work, RuO2 , with excellent conductivity, capacity and catalytic properties, is utilized as an interfacial layer to modify the BHJ layer. However, the homogeneous coverage of hydrophilic RuO2 on the hydrophobic BHJ surface is challenging. To address this issue, a Pt nanoparticle-assisted homogeneous RuO2 layer deposition method is developed and successfully applied to several BHJ-based photocathodes, achieving superior PEC performance compared to those prepared by conventional interface engineering strategies. Among them, the fluorine-doped tin oxide (FTO)/J71:N2200(Pt)/RuO2 photocathode generates the best photocurrent density of -9.0 mA cm-2 at 0 V with an onset potential of up to 1.0 V under AM1.5 irradiation.

6.
Small ; 19(6): e2205244, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36436884

RESUMO

Liquid-crystal small molecule donor (LC-SMD) is a new type organic semiconductor, which is attractive not only for the easy synthesis and purification, well-defined chemical structures, etc., but also for the LC state that makes the crystallinity and aggregation state of molecules adjustable. Here, one new LC-SMD (a-BTR-H4) is synthesized with 1D alkoxyl and 2D thiophene-alkylthiol side-chained benzo[1,2-b:4,5-b']dithiophene core, trithiophene π-bridge, and 3-(2-ethylhexyl) rhodanine end group. a-BTR-H4 shows low LC transition temperature, 117 °C, however, counterpart material (a-BTR-H5) with the same main structure but 3-ethyl rhodanine terminal group does not show LC properties. Although a-BTR-H4/H5 show similar Ultraviolet-visible absorption spectrum and energy levels, a-BTR-H4 affords relatively high photovoltaic performances due to favorable blend morphology produced by the consistent annealing temperature of Y6-based accepters and liquid crystal temperature of donors. Preliminary results indicate that a-BTR-H4 gains a power conversion efficiency (PCE) of 11.36% for Y6-based devices, which is ascribed to better light harvest as well as balanced carrier generation and transport, while a-BTR-H5 obtains 7.57% PCE. Therefore, some materials with unique nematic LC phase have great application potential in organic electronics, and further work to utilize a-BTR-H4 for high-performance device is underway.

7.
J Environ Manage ; 345: 118810, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37595461

RESUMO

Vegetation concrete has been widely applied for the ecological restoration of bare steep slopes in short-term frozen and non-frozen soil regions in China. However, field experiments conducted in seasonally frozen soil regions have revealed decreases in the bulk density, nutrient content and vegetation coverage. This study aimed to clarify the evolution process and mechanism of the engineering properties of vegetation concrete under atmospheric freeze-thaw (F-T) test conditions. The physical, mechanical, and nutrient properties of vegetation concrete were investigated using six F-T cycles (0, 1, 2, 5, 10 and 20) and two initial soil water contents (18 and 22%). The results revealed decreases in the acoustic wave velocity and cohesive forces and an increase in the permeability coefficient of the vegetation concrete owing to F-T action. X-ray diffraction tests indicated that the decreased cohesive force was closely related to the overall decrease in the content of gelling hydration products in the vegetation concrete. Additionally, the contents of NH4+-N, PO43-P and K+ in the vegetation concrete increased, whereas that of NO3--N decreased. The loss rates of these soluble nutrients increased, indicating that the nutrient retention capacity of the vegetation concrete had decreased. Specifically, the decreased nutrient retention capacity was mainly related to the disintegration and fragmentation of larger aggregates due to F-T action. This study provides theoretical support for future research on improving the anti-freezing capability of ecological slope protection substrates in seasonally frozen soil regions.


Assuntos
Solo , Água , Solo/química , Clima , Engenharia , China
8.
J Craniofac Surg ; 33(8): 2650-2652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36000745

RESUMO

BACKGROUND: Surgical resection through extraoral approach is the first choice for submental mass but leaves a visible scar. This study introduces an endoscopy-assisted transoral approach to resect submental mass and evaluates the clinical results. PATIENTS AND METHODS: From September 2018 to December 2019, 5 patients with submental mass underwent surgical resection through endoscopy-assisted transoral approach. The swallowing, speech, and appearance domains of the University of Washington Quality of Life questionnaire were assessed preoperatively and at 3 months postoperatively. RESULTS: Each mass was completely removed without rupture. No patient developed any permanent postoperative complications. The function and aesthetic outcomes were excellent without recurrence. CONCLUSIONS: Endoscopy-assisted transoral approach for resection of submental mass is a reliable technique that achieves excellent postoperative aesthetics and functional results.


Assuntos
Estética Dentária , Qualidade de Vida , Humanos , Endoscopia/métodos
9.
J Am Chem Soc ; 143(30): 11679-11689, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34284578

RESUMO

Strategies to improve stretchability of polymer semiconductors, such as introducing flexible conjugation-breakers or adding flexible blocks, usually result in degraded electrical properties. In this work, we propose a concept to address this limitation, by introducing conjugated rigid fused-rings with optimized bulky side groups and maintaining a conjugated polymer backbone. Specifically, we investigated two classes of rigid fused-ring systems, namely, benzene-substituted dibenzothiopheno[6,5-b:6',5'-f]thieno[3,2-b]thiophene (Ph-DBTTT) and indacenodithiophene (IDT) systems, and identified molecules displaying optimized electrical and mechanical properties. In the IDT system, the polymer PIDT-3T-OC12-10% showed promising electrical and mechanical properties. In fully stretchable transistors, the polymer PIDT-3T-OC12-10% showed a mobility of 0.27 cm2 V-1 s-1 at 75% strain and maintained its mobility after being subjected to hundreds of stretching-releasing cycles at 25% strain. Our results underscore the intimate correlation between chemical structures, mechanical properties, and charge carrier mobility for polymer semiconductors. Our described molecular design approach will help to expedite the next generation of intrinsically stretchable high-performance polymer semiconductors.

10.
Small ; 17(52): e2104307, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34725925

RESUMO

Cost-effective photoanodes with remarkable electronic properties are highly demanded for practical photoelectrochemical (PEC) water splitting. The ability to manipulate the surface carrier separation and recombination is pivotal for achieving high PEC performance for water splitting. Here, a facile and economical approach is reported for substantially improving the surface charge separation property of CdS photoanodes through in situ photoactivation, which significantly reduces surface charge recombination through the formation of thiosulfate ion which is favorable to the transfer of photogenerated holes and a uniform nanoporous morphology via the dissolving Cd2+ with phosphate ions on the surface of CdS. The resulting CdS electrodes through scalable particle transfer method exhibit nearly tripled photocurrents, with an incident-photon-to-current conversion efficiency (IPCE) at 480 nm exceeding 80% at 0.6 V versus reversible hydrogen electrode (RHE). And the CdS thin films prepared from chemical bath deposition display quadrupled photocurrents after the stir and PEC activation, with an IPCE of 91.7% at 455 nm and 0.6 V versus RHE. With the suppression of photocorrosion in alkaline borate buffer, the activated photoanodes show great stability for solar hydrogen production at the sacrifice of sulfite. This work brings insights into the design of nanoporous metal sulfide semiconductors for solar water splitting.

11.
Clin Oral Investig ; 25(4): 2249-2256, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32844258

RESUMO

OBJECTIVE: Oral submucous fibrosis (OSF) is an oral mucous disease caused by betel quid chewing. It is controversial whether OSF can transform into oral squamous cell carcinoma (OSCC). MATERIALS AND METHODS: In this prospective study, a group of 567 patients with OSF were enrolled from 1986 to 2017 and followed-up until 2019. The cancerous information was collected and analyzed. RESULTS: OSF transformed into OSCC in 32 cases (32/567, 5.6%). The patient's age ranged from 20 to 69 years, and the average age was 52 years. The time taken for transformation ranged from 2 to 24 years, the average being 8.6 years. The cancerous transformation occurred in 18 patients (56%) from years 2 to 9, in 13 patients (41%) from years 10-19 and in 1 patient (3%) from 24 years. We analyzed the betel quid chewing habits and found all 32 patients with OSCC-chewed betel quid. Betel quid chewing was most prevalent in patients aged 40-69 years. Sixteen patients had chewed betel quid for 10-19 years (16/32, 50%) and 19 patients (60%) chewed 10-19 slices each day. The OSCC was located in the left or right buccal regions in 23 patients (23/32; 72%) and in the left or right lingual regions in 4 patients (4/32; 12%). Well, moderately and poorly differentiated squamous cell carcinoma was present in 23 patients (23/32; 72%), 4 patients (3/32; 9%), and 5 patients (5/32; 16%), respectively. CONCLUSION: Our findings supported that OSF is a real oral premalignant disorder. CLINICAL RELEVANCE: The long duration of the transformation from the OSF to OSCC suggests more frequent examinations and corresponding treatments are necessary for OSF patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Fibrose Oral Submucosa , Adulto , Idoso , Areca/efeitos adversos , Carcinoma de Células Escamosas/epidemiologia , China/epidemiologia , Humanos , Pessoa de Meia-Idade , Neoplasias Bucais/epidemiologia , Fibrose Oral Submucosa/epidemiologia , Estudos Prospectivos , Adulto Jovem
12.
BMC Cancer ; 20(1): 107, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041570

RESUMO

BACKGROUND: Increasing studies have demonstrated that long non-coding RNAs (lncRNAs) play an important role in tumor progression. However, the potential biological functions and clinical importance of Linc01234 in oral squamous cell carcinoma (OSCC) remain unclear. METHODS: We evaluated the expression profile and prognostic value of Linc01234 in OSCC tissues by RT-qPCR. Then, functional in vitro experiments were performed to investigate the effects of Linc01234 on tumor growth, migration and invasion in OSCC. Mechanistically, RT-qPCR, bioinformatic analysis and dual luciferase reporter assays were performed to identify a competitive endogenous RNA (ceRNA) mechanism involving Linc01234, miR-433-3p and PAK4. RESULTS: We found that Linc01234 was clearly upregulated in OSCC tissues and cell lines, and its level was positively associated with T stage, lymph node metastasis, differentiation and poor prognosis of patients with OSCC. Our results shown that Linc01234 inhibited cell proliferation and metastatic abilities in CAL27 and SCC25 cells following its knockdown. Mechanistic analysis indicated that Linc01234 may act as a ceRNA (competing endogenous RNA) of miR-433-3p to relieve the repressive effect of miR-433-3p on its target PAK4. CONCLUSIONS: Our results indicated that Linc01234 promotes OSCC progression through the Linc01234/miR-433/PAK4 axis and might be a potential therapeutic target for OSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias Bucais/genética , Interferência de RNA , RNA Longo não Codificante , Quinases Ativadas por p21/genética , Regiões 3' não Traduzidas , Adulto , Idoso , Biomarcadores Tumorais , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Feminino , Inativação Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/mortalidade , Neoplasias Bucais/patologia , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico
13.
Angew Chem Int Ed Engl ; 59(1): 154-160, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31697030

RESUMO

Conversion of carbon monoxide to high value-added ethylene with high selectivity by traditional syngas conversion process is challenging because of the limitation of Anderson-Schulz-Flory distribution. Herein we report a direct electrocatalytic process for highly selective ethylene production from CO reduction with water over Cu catalysts at room temperature and ambient pressure. An unprecedented 52.7 % Faradaic efficiency of ethylene formation is achieved through optimization of cathode structure to facilitate CO diffusion at the surface of the electrode and Cu catalysts to enhance the C-C bond coupling. The highly selective ethylene production is almost without other carbon-based byproducts (e.g. C1 -C4 hydrocarbons and CO2 ) and avoids the drawbacks of the traditional Fischer-Tropsch process that always delivers undesired products. This study provides a new and promising strategy for highly selective production of ethylene from the abundant industrial CO.

14.
Macromol Rapid Commun ; 39(21): e1800446, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30144192

RESUMO

The 2D asymmetric benzodithiophene (BDT) unit is used as a donor unit to construct one new polymer PBDTBDD-Th with benzo[1,2-c:4,5-c']dithiophene-4,8-dione (BDD) as acceptor building block. In comparison to the polymer PBDTsTh-BDD with a side chain containing a sulfur atom, the devices based on PBDTBDD-Th/ITIC show better performance due to the introduction of carbon atoms in the side chain, which could weaken the self-aggregations of polymer chains. As a result, the devices based on PBDTBDD-Th/ITIC blends yield power conversion efficiencies (PCEs) over 10%, much higher than those based on PBDTsTh-BDD/ITIC blends (7.09%). The exciton dissociation probabilities (P diss ) of a device based on PBDTBDD-Th/ITIC blends is 95.3%, which suggests that the device achieves good exciton dissociation and charge transfer. In general, the polymer PBDTBDD-Th shows capability to increase the PCEs of polymer solar cells (PSCs) with a non-fullerene acceptor.


Assuntos
Polímeros/química , Energia Solar , Tiofenos/química , Estrutura Molecular , Polímeros/síntese química
15.
Reprod Fertil Dev ; 29(12): 2411-2418, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28553998

RESUMO

RAB, member of RAS oncogene family like 2B (RABL2B) is a member of a poorly characterised clade of the RAS GTPase superfamily, which plays an essential role in male fertility, sperm intraflagellar transport and tail assembly. In the present study, we identified a novel RABL2B splice variant in bovine testis and spermatozoa. This splice variant, designated RABL2B-TV, is characterised by exon 2 skipping. Moreover, a single nucleotide polymorphism (SNP), namely c.125G>A, was found within the exonic splicing enhancer (ESE) motif, indicating that the SNP caused the production of the RABL2B-TV aberrant splice variant. This was demonstrated by constructing a pSPL3 exon capturing vector with different genotypes and transfecting these vectors into murine Leydig tumour cell line (MLTC-1) cells. Expression of the RABL2B-TV transcript was lower in semen from high- versus low-performance bulls. Association analysis showed that sperm deformity rate was significantly lower in Chinese Holstein bulls with the GG or GA genotype than in bulls with the AA genotype (P<0.05). In addition, initial sperm motility was significantly higher in individuals with the GG or GA genotype than in individuals with the AA genotype (P<0.05). The findings of the present study suggest that the difference in semen quality in bulls with different RABL2B genotypes is generated via an alternative splicing mechanism caused by a functional SNP within the ESE motif.


Assuntos
Genótipo , Polimorfismo de Nucleotídeo Único , Motilidade dos Espermatozoides/genética , Proteínas rab de Ligação ao GTP/genética , Processamento Alternativo , Animais , Bovinos , Linhagem Celular Tumoral , Éxons , Masculino , Regiões Promotoras Genéticas , Análise do Sêmen , Testículo/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
16.
J Am Chem Soc ; 138(4): 1114-7, 2016 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-26807600

RESUMO

Plasmonic metal/semiconductor heterostructures show promise for visible-light-driven photocatalysis. Gold nanorods (AuNRs) semi-coated with TiO2 are expected to be ideally structured systems for hydrogen evolution. Synthesizing such structures by wet-chemistry methods, however, has proved challenging. Here we report the bottom-up synthesis of AuNR/TiO2 nanodumbbells (NDs) with spatially separated Au/TiO2 regions, whose structures are governed by the NRs' diameter, and the higher curvature and lower density of CnTAB surfactant at the NRs' tips than on their lateral surfaces, as well as the morphology's dependence on concentration, and alkyl chain length of CnTAB. The NDs show plasmon-enhanced H2 evolution under visible and near-infrared light.

18.
Nano Lett ; 15(3): 2132-6, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25664666

RESUMO

The optical resonances of plasmonic nanostructures depend critically on the geometrical details of the absorber. We show that this unique property of plasmons can potentially be used to create panchromatic absorbers covering most of the useful solar spectrum, by measuring the light-to-hydrogen conversion capabilities of a series multielectrode photocatalytic devices, based on functionalized gold nanorods of appropriately chosen aspect ratios. Judiciously combining nanorods of various aspect ratios almost doubles the H2 production of the device over what is optimally possible with a device using gold nanorods of a single aspect ratio (all other key parameters being equal). The estimated quantum efficiency (absorbed photons-to-hydrogen) averaged over the entire solar spectrum of the best performing plasmonic multielectrode array was approximately 0.1%, and the measured H2 production rate for all of the devices was found to be approximately proportional to the hot electron generation. The device was monitored continuously for over 200 hr of operation without measurable diminution in the rate.

19.
J Am Chem Soc ; 137(31): 9772-5, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26222800

RESUMO

We have developed a facile procedure that can create asymmetrical building blocks by uniformly deforming nanospheres into C(∞v) symmetry at low cost and high quality. Concave polystyrene@carbon (PS@C) core-shell nanospheres were produced by a very simple microwave-assisted alcohol thermal treatment of spherical PS@C nanoparticles. The dimensions and ratio of the concave part can be precisely controlled by temperature and solvents. The concavity is created by varying the alcohol-thermal treatment to tune the swelling properties that lead to the mechanical deformation of the PS@C core-shell structure. The driving force is attributed to the significant volume increase that occurs upon polystyrene core swelling with the incorporation of solvent. We propose a mechanism adapted from published models for the depression of soft capsules. An extrapolation from this model predicts that the rigid shell is used to generate a cavity in the unbuckled shell, which is experimentally confirmed. This swelling and deformation route is flexible and should be applicable to other polymeric nanoparticles to produce asymmetrical nanoparticles.

20.
J Am Chem Soc ; 137(8): 2828-31, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25671760

RESUMO

Constructing nanoparticles into well-defined structures at mesoscale and larger to create novel functional materials remains a challenge. Inspired by atomic epitaxial growth, we propose an "epitaxial assembly" method to form two-dimensional nanoparticle arrays (2D NAs) directly onto desired materials. As an illustration, we employ a series of surfactant-capped nanoparticles as the "artificial atoms" and layered hybrid perovskite (LHP) materials as the substrates and obtain 2D NAs in a large area with few defects. This method is universal for nanoparticles with different shapes, sizes, and compositions and for LHP substrates with different metallic cores. Raman spectroscopic and X-ray diffraction data support our hypothesis of epitaxial assembly. The novel method offers new insights into the controllable assembly of complex functional materials and may push the development of materials science at the mesoscale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA