Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 24(71): 19038-19044, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30260045

RESUMO

Although hollow silver nanocrystals possess unique plasmonic properties, there is a lack of robust strategies to synthesize such nanocrystals with high efficiency and controllability. To solve this problem, a new surface-protected etching strategy to convert solid Ag nanocrystals, which are widely available from conventional syntheses, into their hollow counterparts, producing a family of hollow Ag nanocrystals is reported. Hollow Ag nanospheres and nanotubes were prepared conveniently in this way. The key was the surface modification of Ag nanocrystals by a minor amount of Pt prior to a controllable etching process, which accounts for enhanced stability of the Ag surface and subsequent etching of Ag from the inner part of the nanocrystals while retaining the overall crystal morphology. These hollow Ag nanocrystals showed distinctive optical properties, as demonstrated by the enhanced optical transmittance of flexible electrodes fabricated with Ag nanotubes, compared to nanowires. These hollow Ag nanocrystals hold promise in different plasmonic and electronic applications.

2.
Angew Chem Int Ed Engl ; 57(36): 11678-11682, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30010224

RESUMO

Although aqueous synthesis of nanocrystals is advantageous in terms of the cost, convenience, environmental friendliness, and surface cleanness of the product, nanocrystals of Pt and non-noble metal alloys are difficult to obtain with controlled morphology and composition from this synthesis owing to a huge gap between the reduction potentials of respective metal salts. This huge gap could now be remedied by introducing a sulfite into the aqueous synthesis, which is believed to resemble an electroless plating mechanism, giving rise to a colloid of Pt-M (M=Ni, Co, Fe) alloy nanowires with an ultrasmall thickness (ca. 2.6 nm) in a high yield. The sulfite also leads to the formation of surface M-S bonds and thus atomic-level Pt/M-S(OH) interfaces for greatly boosted hydrogen evolution kinetics under alkaline conditions. An activity of 75.3 mA cm-2 has been achieved with 3 µg of Pt in 1 m KOH at an overpotential of 70 mV, which is superior to previously reported catalysts.

3.
Chemistry ; 23(28): 6803-6810, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28221006

RESUMO

Designed synthesis of noble metal mesocrystals is of great significance for a variety of applications. Here, the synthesis of octahedral Pt-Ag alloy mesocrystals with precisely controlled morphology, size, and exposing facets, formed by oriented aggregation of their crystallites, is reported. The critical role of bromide was revealed in regulating the overall octahedral morphology of the Pt-Ag mesocrystals, by bridging the interactions between the capping agent and the Ag-modified Pt crystallites. The size of the mesocrystals was precisely controlled in a broad range by tuning the number of the seeds, all retaining their octahedral morphology. Based on this understanding, octahedral Pt-Ag mesocrystals exposing {1 1 1} facets have been obtained in a highly controllable and reproducible manner. This material showed excellent electrocatalytic activity and stability in oxygen reduction reactions (ORR). It is hoped that the current synthesis provides new insights that pave the way to diverse faceted nanocrystals/mesocrystals for high-performance catalytic and many other applications.

4.
Nanomaterials (Basel) ; 13(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36839081

RESUMO

Thin Au nanoplates show intriguing localized surface plasmon resonance (LSPR) properties with potential applications in various fields. The conventional synthesis of Au nanoplates usually involves the formation of spherical nanoparticles or produces nanoplates with large thicknesses. Herein, we demonstrate a synthesis of uniform thin Au nanoplates by using Au-Ag alloy nanoframes obtained by the galvanic replacement of Ag nanoplates with HAuCl4 as the seeds and a sulfite (SO32-) as a ligand. The SO32- ligand not only complexes with the Au salt for the controlled reduction kinetics but also strongly adsorbs on Au {111} facets for effectively constraining the crystal growth on both basal sides of the Au nanoplates for controlled shape and reduced thicknesses. This seed-mediated synthesis affords Au nanoplates with a thickness of only 7.5 nm, although the thickness increases with the edge length. The edge length can be customizable in a range of 48-167 nm, leading to tunable LSPR bands in the range of 600-1000 nm. These thin Au nanoplates are applicable not only to surface-enhanced Raman spectroscopy with enhanced sensitivity and reliability but also to a broader range of LSPR-based applications.

5.
Chem Sci ; 9(2): 398-404, 2018 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-29629110

RESUMO

Ultrathin Pt nanostructures exposing controlled crystal facets are highly desirable for their superior activity and cost-effectiveness in the electrocatalytic oxygen reduction reaction (ORR), and they are conventionally synthesized by epitaxial growth of Pt on a limited range of templates, such as Pd nanocrystals, resulting in a high cost and less structural diversity of the ultrathin Pt nanostructures. To solve this problem, we demonstrate that ultrathin Pt nanostructures can be synthesized by templating conveniently available Ag nanocrystals without involving galvanic replacement, which enables a much-reduced cost and controllable new morphologies, such as ultrathin Pt nanoplates that expose the {111} facets. The resulting ultrathin Pt nanoplates are ∼1-2 nm in thickness, which show an ∼22-fold increase in specific activity (5.3 mA cm-2), an ∼9.5-fold increase in mass activity (1.62 A mg-1) and significantly enhanced catalytic stability in the ORR, compared with the commercial Pt/C catalyst. We believe this strategy opens a door to a highly extendable family of ultrathin noble metal nanostructures, thus promising excellent activity and stability in a broad range of catalytic applications.

6.
Nanoscale ; 8(34): 15689-95, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27524663

RESUMO

Plasmonic noble metal nanocrystals with interior nanogaps have attracted great attention in surface-enhanced Raman scattering (SERS) applications due to the presence of built-in hotspots. Herein, we report a synthesis route to holey Au-Ag alloy nanoplates by controlled galvanic replacement with Ag nanoplates as the sacrificial template, a sulfite-coordinated Au(i) salt as the Au source, and polyvinylpyrrolidone (PVP) as the capping agent. PVP helps regulate the anisotropic growth of nanopores on the Ag nanoplates to afford a highly holey nanostructure, and the monovalent Au(i) salt plays a critical role in stabilizing these holey nanoplates by rapidly enriching Au in the alloy nanostructures. Numerical simulations and experimental results suggest that these holey Au-Ag alloy nanoplates possess enormous internal hotspots for high sensitivity in the SERS analysis, and high stability for excellent reliability of the analysis under many harsh conditions. We believe that this strategy is potentially applicable to the synthesis of many other types of plasmonic nanostructures with inherent nanogaps for many sensing and imaging applications.

7.
Sci Rep ; 3: 3260, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24247355

RESUMO

Reduced graphene oxide-azobenzene (RGO-AZO) hybrids were prepared via covalent functionalization for long-term solar thermal storage. Thermal barrier (ΔEa) of cis to tran reversion and thermal storage (ΔH) were improved by molecular hydrogen bonds (H-bonds) through ortho- or para-substitution of AZO. Intramolecular H-bonds thermally stabilized cis-ortho-AZO on RGO with a long-term half-life of 5400 h (ΔEa = 1.2 eV), which was much longer than that of RGO-para-AZO (116 h). RGO-para-AZO with one intermolecular H-bond showed a high density of thermal storage up to 269.8 kJ kg(-1) compared with RGO-ortho-AZO (149.6 kJ kg(-1)) with multiple intra- and intermolecular H-bonds of AZO according to relaxed stable structures. Thermal storage in experiment was the same order magnitude to theoretical data based on ΔH calculated by density functional theory and packing density. Photoactive RGO-AZO hybrid can be developed for high-performance solar thermal storage by optimizing molecular H-bonds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA