Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(4): 943-956.e18, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33571432

RESUMO

Dopamine receptors, including D1- and D2-like receptors, are important therapeutic targets in a variety of neurological syndromes, as well as cardiovascular and kidney diseases. Here, we present five cryoelectron microscopy (cryo-EM) structures of the dopamine D1 receptor (DRD1) coupled to Gs heterotrimer in complex with three catechol-based agonists, a non-catechol agonist, and a positive allosteric modulator for endogenous dopamine. These structures revealed that a polar interaction network is essential for catecholamine-like agonist recognition, whereas specific motifs in the extended binding pocket were responsible for discriminating D1- from D2-like receptors. Moreover, allosteric binding at a distinct inner surface pocket improved the activity of DRD1 by stabilizing endogenous dopamine interaction at the orthosteric site. DRD1-Gs interface revealed key features that serve as determinants for G protein coupling. Together, our study provides a structural understanding of the ligand recognition, allosteric regulation, and G protein coupling mechanisms of DRD1.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Receptores de Dopamina D1/metabolismo , Transdução de Sinais , Regulação Alostérica , Sítio Alostérico , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Catecóis/metabolismo , Microscopia Crioeletrônica , Fenoldopam/química , Fenoldopam/farmacologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Multimerização Proteica , Receptores de Dopamina D1/química , Receptores de Dopamina D1/ultraestrutura , Receptores de Dopamina D2/metabolismo , Homologia Estrutural de Proteína
2.
Nucleic Acids Res ; 52(6): 3433-3449, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38477394

RESUMO

The regulation of carbon metabolism and virulence is critical for the rapid adaptation of pathogenic bacteria to host conditions. In Pseudomonas aeruginosa, RccR is a transcriptional regulator of genes involved in primary carbon metabolism and is associated with bacterial resistance and virulence, although the exact mechanism is unclear. Our study demonstrates that PaRccR is a direct repressor of the transcriptional regulator genes mvaU and algU. Biochemical and structural analyses reveal that PaRccR can switch its DNA recognition mode through conformational changes triggered by KDPG binding or release. Mutagenesis and functional analysis underscore the significance of allosteric communication between the SIS domain and the DBD domain. Our findings suggest that, despite its overall structural similarity to other bacterial RpiR-type regulators, RccR displays a more complex regulatory element binding mode induced by ligands and a unique regulatory mechanism.


Assuntos
Proteínas de Bactérias , Pseudomonas aeruginosa , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidade , Virulência/genética , Fatores de Virulência/genética
3.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37651610

RESUMO

The accurate prediction of the effect of amino acid mutations for protein-protein interactions (PPI $\Delta \Delta G$) is a crucial task in protein engineering, as it provides insight into the relevant biological processes underpinning protein binding and provides a basis for further drug discovery. In this study, we propose MpbPPI, a novel multi-task pre-training-based geometric equivariance-preserving framework to predict PPI  $\Delta \Delta G$. Pre-training on a strictly screened pre-training dataset is employed to address the scarcity of protein-protein complex structures annotated with PPI $\Delta \Delta G$ values. MpbPPI employs a multi-task pre-training technique, forcing the framework to learn comprehensive backbone and side chain geometric regulations of protein-protein complexes at different scales. After pre-training, MpbPPI can generate high-quality representations capturing the effective geometric characteristics of labeled protein-protein complexes for downstream $\Delta \Delta G$ predictions. MpbPPI serves as a scalable framework supporting different sources of mutant-type (MT) protein-protein complexes for flexible application. Experimental results on four benchmark datasets demonstrate that MpbPPI is a state-of-the-art framework for PPI $\Delta \Delta G$ predictions. The data and source code are available at https://github.com/arantir123/MpbPPI.


Assuntos
Aminoácidos , Benchmarking , Mutação , Descoberta de Drogas , Aprendizagem
4.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36526280

RESUMO

Graph neural networks based on deep learning methods have been extensively applied to the molecular property prediction because of its powerful feature learning ability and good performance. However, most of them are black boxes and cannot give the reasonable explanation about the underlying prediction mechanisms, which seriously reduce people's trust on the neural network-based prediction models. Here we proposed a novel graph neural network named iteratively focused graph network (IFGN), which can gradually identify the key atoms/groups in the molecule that are closely related to the predicted properties by the multistep focus mechanism. At the same time, the combination of the multistep focus mechanism with visualization can also generate multistep interpretations, thus allowing us to gain a deep understanding of the predictive behaviors of the model. For all studied eight datasets, the IFGN model achieved good prediction performance, indicating that the proposed multistep focus mechanism also can improve the performance of the model obviously besides increasing the interpretability of built model. For researchers to use conveniently, the corresponding website (http://graphadmet.cn/works/IFGN) was also developed and can be used free of charge.


Assuntos
Aprendizagem , Redes Neurais de Computação , Humanos , Pesquisadores
5.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36738254

RESUMO

Drug resistance is increasingly among the main issues affecting human health and threatening agriculture and food security. In particular, developing approaches to overcome target mutation-induced drug resistance has long been an essential part of biological research. During the past decade, many bioinformatics tools have been developed to explore this type of drug resistance, and they have become popular for elucidating drug resistance mechanisms in a low cost, fast and effective way. However, these resources are scattered and underutilized, and their strengths and limitations have not been systematically analyzed and compared. Here, we systematically surveyed 59 freely available bioinformatics tools for exploring target mutation-induced drug resistance. We analyzed and summarized these resources based on their functionality, data volume, data source, operating principle, performance, etc. And we concisely discussed the strengths, limitations and application examples of these tools. Specifically, we tested some predictive tools and offered some thoughts from the clinician's perspective. Hopefully, this work will provide a useful toolbox for researchers working in the biomedical, pesticide, bioinformatics and pharmaceutical engineering fields, and a good platform for non-specialists to quickly understand drug resistance prediction.


Assuntos
Biologia Computacional , Software , Humanos , Mutação , Resistência a Medicamentos
6.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36681903

RESUMO

Binding affinity prediction largely determines the discovery efficiency of lead compounds in drug discovery. Recently, machine learning (ML)-based approaches have attracted much attention in hopes of enhancing the predictive performance of traditional physics-based approaches. In this study, we evaluated the impact of structural dynamic information on the binding affinity prediction by comparing the models trained on different dimensional descriptors, using three targets (i.e. JAK1, TAF1-BD2 and DDR1) and their corresponding ligands as the examples. Here, 2D descriptors are traditional ECFP4 fingerprints, 3D descriptors are the energy terms of the Smina and NNscore scoring functions and 4D descriptors contain the structural dynamic information derived from the trajectories based on molecular dynamics (MD) simulations. We systematically investigate the MD-refined binding affinity prediction performance of three classical ML algorithms (i.e. RF, SVR and XGB) as well as two common virtual screening methods, namely Glide docking and MM/PBSA. The outcomes of the ML models built using various dimensional descriptors and their combinations reveal that the MD refinement with the optimized protocol can improve the predictive performance on the TAF1-BD2 target with considerable structural flexibility, but not for the less flexible JAK1 and DDR1 targets, when taking docking poses as the initial structure instead of the crystal structures. The results highlight the importance of the initial structures to the final performance of the model through conformational analysis on the three targets with different flexibility.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Ligantes , Proteínas/química , Ligação Proteica , Aprendizado de Máquina , Simulação de Acoplamento Molecular
7.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37099690

RESUMO

Rapid and accurate prediction of drug-target affinity can accelerate and improve the drug discovery process. Recent studies show that deep learning models may have the potential to provide fast and accurate drug-target affinity prediction. However, the existing deep learning models still have their own disadvantages that make it difficult to complete the task satisfactorily. Complex-based models rely heavily on the time-consuming docking process, and complex-free models lacks interpretability. In this study, we introduced a novel knowledge-distillation insights drug-target affinity prediction model with feature fusion inputs to make fast, accurate and explainable predictions. We benchmarked the model on public affinity prediction and virtual screening dataset. The results show that it outperformed previous state-of-the-art models and achieved comparable performance to previous complex-based models. Finally, we study the interpretability of this model through visualization and find it can provide meaningful explanations for pairwise interaction. We believe this model can further improve the drug-target affinity prediction for its higher accuracy and reliable interpretability.


Assuntos
Benchmarking , Descoberta de Drogas , Sistemas de Liberação de Medicamentos
8.
Funct Integr Genomics ; 24(2): 63, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517555

RESUMO

The TRIM family is associated with the membrane, and its involvement in the progression, growth, and development of various cancer types has been researched extensively. However, the role played by the TRIM5 gene within this family has yet to be explored to a great extent in terms of hepatocellular carcinoma (HCC). The data of patients relating to mRNA expression and the survival rate of individuals diagnosed with HCC were extracted from The Cancer Genome Atlas (TCGA) database. UALCAN was employed to examine the potential link between TRIM5 expression and clinicopathological characteristics. In addition, enrichment analysis of differentially expressed genes (DEGs) was conducted as a means of deciphering the function and mechanism of TRIM5 in HCC. The data in the TCGA and TIMER2.0 databases was utilized to explore the correlation between TRIM5 and immune infiltration in HCC. WGCNA was performed as a means of assessing TRIM5-related co-expressed genes. The "OncoPredict" R package was also used for investigating the association between TRIM5 and drug sensitivity. Finally, qRT-PCR, Western blotting (WB) and immunohistochemistry (IHC) were employed for exploring the differential expression of TRIM5 and its clinical relevance in HCC. According to the results that were obtained from the vitro experiments, mRNA and protein levels of TRIM5 demonstrated a significant upregulation in HCC tissues. It is notable that TRIM5 expression levels were found to have a strong association with the infiltration of diverse immune cells and displayed a positive correlation with several immune checkpoint inhibitors. The TRIM5 expression also displayed promising clinical prognostic value for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Expressão Gênica , RNA Mensageiro , Biomarcadores , Proteínas com Motivo Tripartido/genética , Fatores de Restrição Antivirais , Ubiquitina-Proteína Ligases
9.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35580866

RESUMO

Predicting the native or near-native binding pose of a small molecule within a protein binding pocket is an extremely important task in structure-based drug design, especially in the hit-to-lead and lead optimization phases. In this study, fastDRH, a free and open accessed web server, was developed to predict and analyze protein-ligand complex structures. In fastDRH server, AutoDock Vina and AutoDock-GPU docking engines, structure-truncated MM/PB(GB)SA free energy calculation procedures and multiple poses based per-residue energy decomposition analysis were well integrated into a user-friendly and multifunctional online platform. Benefit from the modular architecture, users can flexibly use one or more of three features, including molecular docking, docking pose rescoring and hotspot residue prediction, to obtain the key information clearly based on a result analysis panel supported by 3Dmol.js and Apache ECharts. In terms of protein-ligand binding mode prediction, the integrated structure-truncated MM/PB(GB)SA rescoring procedures exhibit a success rate of >80% in benchmark, which is much better than the AutoDock Vina (~70%). For hotspot residue identification, our multiple poses based per-residue energy decomposition analysis strategy is a more reliable solution than the one using only a single pose, and the performance of our solution has been experimentally validated in several drug discovery projects. To summarize, the fastDRH server is a useful tool for predicting the ligand binding mode and the hotspot residue of protein for ligand binding. The fastDRH server is accessible free of charge at http://cadd.zju.edu.cn/fastdrh/.


Assuntos
Proteínas , Sítios de Ligação , Entropia , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/química
10.
J Chem Inf Model ; 64(9): 3630-3639, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38630855

RESUMO

The introduction of AlphaFold2 (AF2) has sparked significant enthusiasm and generated extensive discussion within the scientific community, particularly among drug discovery researchers. Although previous studies have addressed the performance of AF2 structures in virtual screening (VS), a more comprehensive investigation is still necessary considering the paramount importance of structural accuracy in drug design. In this study, we evaluate the performance of AF2 structures in VS across three common drug discovery scenarios: targets with holo, apo, and AF2 structures; targets with only apo and AF2 structures; and targets exclusively with AF2 structures. We utilized both the traditional physics-based Glide and the deep-learning-based scoring function RTMscore to rank the compounds in the DUD-E, DEKOIS 2.0, and DECOY data sets. The results demonstrate that, overall, the performance of VS on AF2 structures is comparable to that on apo structures but notably inferior to that on holo structures across diverse scenarios. Moreover, when a target has solely AF2 structure, selecting the holo structure of the target from different subtypes within the same protein family produces comparable results with the AF2 structure for VS on the data set of the AF2 structures, and significantly better results than the AF2 structures on its own data set. This indicates that utilizing AF2 structures for docking-based VS may not yield most satisfactory outcomes, even when solely AF2 structures are available. Moreover, we rule out the possibility that the variations in VS performance between the binding pockets of AF2 and holo structures arise from the differences in their biological assembly composition.


Assuntos
Descoberta de Drogas , Descoberta de Drogas/métodos , Proteínas/química , Proteínas/metabolismo , Conformação Proteica , Simulação de Acoplamento Molecular , Aprendizado Profundo , Humanos , Desenho de Fármacos
11.
Surg Innov ; : 15533506241246335, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656291

RESUMO

BACKGROUND: Accurate recognition of Calot's triangle during cholecystectomy is important in preventing intraoperative and postoperative complications. The use of indocyanine green (ICG) fluorescence imaging has become increasingly prevalent in cholecystectomy procedures. Our study aimed to evaluate the specific effects of ICG-assisted imaging in reducing complications. MATERIALS AND METHODS: A comprehensive search of databases including PubMed, Web of Science, Europe PMC, and WANFANGH DATA was conducted to identify relevant articles up to July 5, 2023. Review Manager 5.3 software was applied to statistical analysis. RESULTS: Our meta-analysis of 14 studies involving 3576 patients compared the ICG group (1351 patients) to the control group (2225 patients). The ICG group had a lower incidence of postoperative complications (4.78% vs 7.25%; RR .71; 95%CI: .54-.95; P = .02). Bile leakage was significantly reduced in the ICG group (.43% vs 2.02%; RR = .27; 95%CI: .12-.62; I2 = 0; P = .002), and they also had a lower bile duct drainage rate (24.8% vs 31.8% RR = .64, 95% CI: .44-.91, P = .01). Intraoperative complexes showed no statistically significant difference between the 2 groups (1.16% vs 9.24%; RR .17; 95%CI .03-1.02), but the incidence of intraoperative bleeding is lower in the ICG group. CONCLUSION: ICG fluorescence imaging-assisted cholecystectomy was associated with a range of benefits, including a lower incidence of postoperative complications, decreased rates of bile leakage, reduced bile duct drainage, fewer intraoperative complications, and reduced intraoperative bleeding.

12.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38928256

RESUMO

The construction of peptides to mimic heterogeneous proteins such as type I collagen plays a pivotal role in deciphering their function and pathogenesis. However, progress in the field has been severely hampered by the lack of capability to create stable heterotrimers with desired functional sequences and without the effect of homotrimers. We have herein developed a set of triblock peptides that can assemble into collagen mimetic heterotrimers with desired amino acids and are free from the interference of homotrimers. The triblock peptides comprise a central collagen-like block and two oppositely charged N-/C-terminal blocks, which display inherent incompetency of homotrimer formation. The favorable electrostatic attraction between two paired triblock peptides with complementary terminal charged sequences promptly leads to stable heterotrimers with controlled chain composition. The independence of the collagen-like block from the two terminal blocks endows this system with the adaptability to incorporate desired amino acid sequences while maintaining the heterotrimer structure. The triblock peptides provide a versatile and robust tool to mimic the composition and function of heterotrimer collagen and may have great potential in the design of innovative peptides mimicking heterogeneous proteins.


Assuntos
Colágeno , Peptídeos , Peptídeos/química , Colágeno/química , Multimerização Proteica , Sequência de Aminoácidos , Colágeno Tipo I/química , Eletricidade Estática
13.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38612573

RESUMO

With the rapid emergence of drug-resistant strains of Mycobacterium tuberculosis (Mtb), various levels of resistance against existing anti-tuberculosis (TB) drugs have developed. Consequently, the identification of new anti-TB targets and drugs is critically urgent. DNA gyrase subunit B (GyrB) has been identified as a potential anti-TB target, with novobiocin and SPR719 proposed as inhibitors targeting GyrB. Therefore, elucidating the molecular interactions between GyrB and its inhibitors is crucial for the discovery and design of efficient GyrB inhibitors for combating multidrug-resistant TB. In this study, we revealed the detailed binding mechanisms and dissociation processes of the representative inhibitors, novobiocin and SPR719, with GyrB using classical molecular dynamics (MD) simulations, tau-random acceleration molecular dynamics (τ-RAMD) simulations, and steered molecular dynamics (SMD) simulations. Our simulation results demonstrate that both electrostatic and van der Waals interactions contribute favorably to the inhibitors' binding to GyrB, with Asn52, Asp79, Arg82, Lys108, Tyr114, and Arg141 being key residues for the inhibitors' attachment to GyrB. The τ-RAMD simulations indicate that the inhibitors primarily dissociate from the ATP channel. The SMD simulation results reveal that both inhibitors follow a similar dissociation mechanism, requiring the overcoming of hydrophobic interactions and hydrogen bonding interactions formed with the ATP active site. The binding and dissociation mechanisms of GyrB with inhibitors novobiocin and SPR719 obtained in our work will provide new insights for the development of promising GyrB inhibitors.


Assuntos
Mycobacterium tuberculosis , Novobiocina/farmacologia , Termodinâmica , Antituberculosos/farmacologia , Simulação de Dinâmica Molecular , Trifosfato de Adenosina
14.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32778891

RESUMO

Deep learning is an important branch of artificial intelligence that has been successfully applied into medicine and two-dimensional ligand design. The three-dimensional (3D) ligand generation in the 3D pocket of protein target is an interesting and challenging issue for drug design by deep learning. Here, the MolAICal software is introduced to supply a way for generating 3D drugs in the 3D pocket of protein targets by combining with merits of deep learning model and classical algorithm. The MolAICal software mainly contains two modules for 3D drug design. In the first module of MolAICal, it employs the genetic algorithm, deep learning model trained by FDA-approved drug fragments and Vinardo score fitting on the basis of PDBbind database for drug design. In the second module, it uses deep learning generative model trained by drug-like molecules of ZINC database and molecular docking invoked by Autodock Vina automatically. Besides, the Lipinski's rule of five, Pan-assay interference compounds (PAINS), synthetic accessibility (SA) and other user-defined rules are introduced for filtering out unwanted ligands in MolAICal. To show the drug design modules of MolAICal, the membrane protein glucagon receptor and non-membrane protein SARS-CoV-2 main protease are chosen as the investigative drug targets. The results show MolAICal can generate the various and novel ligands with good binding scores and appropriate XLOGP values. We believe that MolAICal can use the advantages of deep learning model and classical programming for designing 3D drugs in protein pocket. MolAICal is freely for any nonprofit purpose and accessible at https://molaical.github.io.


Assuntos
Algoritmos , Inteligência Artificial , Desenho de Fármacos , Proteínas/química , Software , Bases de Dados de Proteínas , Relação Quantitativa Estrutura-Atividade
15.
Brief Bioinform ; 22(4)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33147620

RESUMO

MOTIVATION: Computational methods accelerate drug discovery and play an important role in biomedicine, such as molecular property prediction and compound-protein interaction (CPI) identification. A key challenge is to learn useful molecular representation. In the early years, molecular properties are mainly calculated by quantum mechanics or predicted by traditional machine learning methods, which requires expert knowledge and is often labor-intensive. Nowadays, graph neural networks have received significant attention because of the powerful ability to learn representation from graph data. Nevertheless, current graph-based methods have some limitations that need to be addressed, such as large-scale parameters and insufficient bond information extraction. RESULTS: In this study, we proposed a graph-based approach and employed a novel triplet message mechanism to learn molecular representation efficiently, named triplet message networks (TrimNet). We show that TrimNet can accurately complete multiple molecular representation learning tasks with significant parameter reduction, including the quantum properties, bioactivity, physiology and CPI prediction. In the experiments, TrimNet outperforms the previous state-of-the-art method by a significant margin on various datasets. Besides the few parameters and high prediction accuracy, TrimNet could focus on the atoms essential to the target properties, providing a clear interpretation of the prediction tasks. These advantages have established TrimNet as a powerful and useful computational tool in solving the challenging problem of molecular representation learning. AVAILABILITY: The quantum and drug datasets are available on the website of MoleculeNet: http://moleculenet.ai. The source code is available in GitHub: https://github.com/yvquanli/trimnet. CONTACT: xjyao@lzu.edu.cn, songsen@tsinghua.edu.cn.


Assuntos
Descoberta de Drogas , Aprendizado de Máquina , Software
16.
J Chem Inf Model ; 63(10): 2983-2991, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37163364

RESUMO

A deep generation model, as a novel drug design and discovery tool, shows obvious advantages in generating compounds with novel backbones and has been applied successfully in the field of drug discovery. However, it is still a challenge to generate molecules with expected properties, especially high activity. Here, to obtain compounds both with novelty and high activity to a target, we proposed a conditional molecular generation model COMG by considering the docking score and 3D pharmacophore matching during molecular generation. The proposed model was based on the conditional variational autoencoder architecture constrained by the pharmacophore matching score. During Bayesian optimization, the docking score was applied to enhance the target relevance of generated compounds. Furthermore, to overcome the problem of high structural similarity caused by Bayesian optimization, the idea of the scaffold memory unit was also introduced. The evaluation results of COMG show that our model not only can improve the structural diversity of generated molecules but also can effectively improve the proportion of target-related drug-active molecules. The obtained results indicate that our proposed model COMG is a useful drug design tool.


Assuntos
Desenho de Fármacos , Descoberta de Drogas , Simulação de Acoplamento Molecular , Teorema de Bayes , Modelos Moleculares
17.
J Chem Inf Model ; 63(20): 6169-6176, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37820365

RESUMO

Target identification and bioactivity prediction are critical steps in the drug discovery process. Here we introduce CODD-Pred (COmprehensive Drug Design Predictor), an online web server with well-curated data sets from the GOSTAR database, which is designed with a dual purpose of predicting potential protein drug targets and computing bioactivity values of small molecules. We first designed a double molecular graph perception (DMGP) framework for target prediction based on a large library of 646 498 small molecules interacting with 640 human targets. The framework achieved a top-5 accuracy of over 80% for hitting at least one target on both external validation sets. Additionally, its performance on the external validation set comprising 200 molecules surpassed that of four existing target prediction servers. Second, we collected 56 targets closely related to the occurrence and development of cancer, metabolic diseases, and inflammatory immune diseases and developed a multi-model self-validation activity prediction (MSAP) framework that enables accurate bioactivity quantification predictions for small-molecule ligands of these 56 targets. CODD-Pred is a handy tool for rapid evaluation and optimization of small molecules with specific target activity. CODD-Pred is freely accessible at http://codd.iddd.group/.


Assuntos
Computadores , Proteínas , Humanos , Proteínas/química , Desenho de Fármacos , Descoberta de Drogas , Bases de Dados Factuais
18.
J Chem Inf Model ; 63(21): 6525-6536, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37883143

RESUMO

Small-molecule conformer generation (SMCG) is an extremely important task in both ligand- and structure-based computer-aided drug design, especially during the hit discovery phase. Recently, a multitude of artificial intelligence (AI) models tailored for SMCG have emerged. Despite developers typically furnishing performance evaluation data upon releasing their AI models, a comprehensive and equitable performance comparison between AI models and conventional methods is still lacking. In this study, we curated a new benchmarking data set comprising 3354 high-quality ligand bioactive conformations. Subsequently, we conducted a systematic assessment of the performance of four widely adopted traditional methods (i.e., ConfGenX, Conformator, OMEGA, and RDKit ETKDG) and five AI models (i.e., ConfGF, DMCG, GeoDiff, GeoMol, and torsional diffusion) in the tasks of reproducing bioactive and low-energy conformations of small molecules. In the former task, the AI models have no advantage, particularly with a maximum ensemble size of 1. Even the best-performing AI model GeoMol is still worse than any of the tested traditional methods. Conversely, in the latter task, the torsional diffusion model shows obvious advantages, surpassing the best-performing traditional method ConfGenX by 26.09 and 12.97% on the COV-R and COV-P metrics, respectively. Furthermore, the influence of force field-based fine-tuning on the quality of the generated conformers was also discussed. Finally, a user-friendly Web server called fastSMCG was developed to enable researchers to rapidly and flexibly generate small-molecule conformers using both traditional and AI methods. We anticipate that our work will offer valuable practical assistance to the scientific community in this field.


Assuntos
Inteligência Artificial , Desenho de Fármacos , Modelos Moleculares , Ligantes , Conformação Molecular
19.
J Comput Aided Mol Des ; 37(12): 695-706, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37642861

RESUMO

Multidrug-resistant tuberculosis (MDR-TB) continues to spread worldwide and remains one of the leading causes of death among infectious diseases. The enoyl-acyl carrier protein reductase (InhA) belongs to FAS-II family and is essential for the formation of the Mycobacterium tuberculosis cell wall. Recent years, InhA direct inhibitors have been extensively studied to overcome MDR-TB. However, there are still no inhibitors that have entered clinical research. Here, the ensemble docking-based virtual screening along with biological assay were used to identify potent InhA direct inhibitors from Chembridge, Chemdiv, and Specs. Ultimately, 34 compounds were purchased and first assayed for the binding affinity, of which four compounds can bind InhA well with KD values ranging from 48.4 to 56.2 µM. Among them, compound 9,222,034 has the best inhibitory activity against InhA enzyme with an IC50 value of 18.05 µM. In addition, the molecular dynamic simulation and binding free energy calculation indicate that the identified compounds bind to InhA with "extended" conformation. Residue energy decomposition shows that residues such as Tyr158, Met161, and Met191 have higher energy contributions in the binding of compounds. By analyzing the binding modes, we found that these compounds can bind to a hydrophobic sub-pocket formed by residues Tyr158, Phe149, Ile215, Leu218, etc., resulting in extensive van der Waals interactions. In summary, this study proposed an efficient strategy for discovering InhA direct inhibitors through ensemble docking-based virtual screening, and finally identified four active compounds with new skeletons, which can provide valuable information for the discovery and optimization of InhA direct inhibitors.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Antituberculosos/farmacologia , Antituberculosos/química , Simulação de Dinâmica Molecular , Conformação Molecular , Proteínas de Bactérias/química , Simulação de Acoplamento Molecular , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
20.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835382

RESUMO

Targeting of the PD-1/PD-L1 immunologic checkpoint is believed to have provided a real breakthrough in the field of cancer therapy in recent years. Due to the intrinsic limitations of antibodies, the discovery of small-molecule inhibitors blocking PD-1/PD-L1 interaction has gradually opened valuable new avenues in the past decades. In an effort to discover new PD-L1 small molecular inhibitors, we carried out a structure-based virtual screening strategy to rapidly identify the candidate compounds. Ultimately, CBPA was identified as a PD-L1 inhibitor with a KD value at the micromolar level. It exhibited effective PD-1/PD-L1 blocking activity and T-cell-reinvigoration potency in cell-based assays. CBPA could dose-dependently elevate secretion levels of IFN-γ and TNF-α in primary CD4+ T cells in vitro. Notably, CBPA exhibited significant in vivo antitumor efficacy in two different mouse tumor models (a MC38 colon adenocarcinoma model and a melanoma B16F10 tumor model) without the induction of observable liver or renal toxicity. Moreover, analyses of the CBPA-treated mice further showed remarkably increased levels of tumor-infiltrating CD4+ and CD8+ T cells and cytokine secretion in the tumor microenvironment. A molecular docking study suggested that CBPA embedded relatively well into the hydrophobic cleft formed by dimeric PD-L1, occluding the PD-1 interaction surface of PD-L1. This study suggests that CBPA could work as a hit compound for the further design of potent inhibitors targeting the PD-1/PD-L1 pathway in cancer immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Receptor de Morte Celular Programada 1 , Animais , Camundongos , Adenocarcinoma/metabolismo , Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Neoplasias do Colo/metabolismo , Simulação de Acoplamento Molecular , Receptor de Morte Celular Programada 1/metabolismo , Microambiente Tumoral , Inibidores de Checkpoint Imunológico/química , Inibidores de Checkpoint Imunológico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA