Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(5): e1010540, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35576225

RESUMO

Tick-borne Anaplasma species are obligate, intracellular, bacterial pathogens that cause important diseases globally in people, agricultural animals, and dogs. Targeted mutagenesis methods are yet to be developed to define genes essential for these pathogens. In addition, vaccines conferring protection against diseases caused by Anaplasma species are not available. Here, we describe a targeted mutagenesis method for deletion of the phage head-to-tail connector protein (phtcp) gene in Anaplasma marginale. The mutant did not cause disease and exhibited attenuated growth in its natural host (cattle). We then assessed its ability to confer protection against wild-type A. marginale infection challenge. Additionally, we compared vaccine protection with the mutant to that of whole cell A. marginale inactivated antigens as a vaccine (WCAV) candidate. Upon infection challenge, non-vaccinated control cattle developed severe disease, with an average 57% drop in packed cell volume (PCV) between days 26-31 post infection, an 11% peak in erythrocytic infection, and apparent anisocytosis. Conversely, following challenge, all animals receiving the live mutant did not develop clinical signs or anemia, or erythrocyte infection. In contrast, the WCAV vaccinees developed similar disease as the non-vaccinees following A. marginale infection, though the peak erythrocyte infection reduced to 6% and the PCV dropped 43%. This is the first study describing targeted mutagenesis and its application in determining in vivo virulence and vaccine development for an Anaplasma species pathogen. This study will pave the way for similar research in related Anaplasma pathogens impacting multiple hosts.


Assuntos
Anaplasma marginale , Anaplasmose , Doenças dos Bovinos , Anaplasma , Anaplasma marginale/genética , Anaplasmose/genética , Anaplasmose/prevenção & controle , Animais , Bovinos , Doenças dos Bovinos/microbiologia , Cães , Humanos , Mutagênese , Desenvolvimento de Vacinas , Virulência
2.
BMC Med ; 21(1): 193, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226233

RESUMO

BACKGROUND: Immunotherapy has emerged as an efficient therapeutic approach for cancer management. However, stimulation of host immune system against cancer cells often fails to achieve promising clinical outcomes mainly owing to the immunosuppressive characteristics of the tumor microenvironment (TME). Combination therapeutics that can trigger sustained immunogenic cell death (ICD) have provided new opportunities for cancer treatment. METHODS: In this study, we designed and applied an ICD inducer regimen, including a genetically engineered oncolytic virus (miRNA-modified coxsackieviruses B3, miR-CVB3), a pore-forming lytic peptide (melittin, found in bee venom), and a synthetic toll-like receptor 9 ligand (CpG oligodeoxynucleotides), for breast cancer and melanoma treatment. We compared the anti-tumor efficacy of miR-CVB3 and CpG-melittin (CpGMel) alone and in combination (miR-CVB3 + CpGMel) and investigated possible mechanisms involved. RESULTS: We demonstrated that miR-CVB3 + CpGMel had no major impact on viral growth, while enhancing the cellular uptake of CpGMel in vitro. We further showed that combination therapy led to significant increases in tumor cell death and release of damage-associated molecular patterns compared with individual treatment. In vivo studies in 4T1 tumor-bearing Balb/c mice revealed that both primary and distant tumors were significantly suppressed, and the survival rate was significantly prolonged after administration of miR-CVB3 + CpGMel compared with single treatment. This anti-tumor effect was accompanied by increased ICD and immune cell infiltration into the TME. Safety analysis showed no significant pathological abnormalities in Balb/c mice. Furthermore, the developed therapeutic regimen also demonstrated a great anti-tumor activity in B16F10 melanoma tumor-bearing C57BL/6 J mice. CONCLUSIONS: Overall, our findings indicate that although single treatment using miR-CVB3 or CpGMel can efficiently delay tumor growth, combining oncolytic virus-based therapy can generate even stronger anti-tumor immunity, leading to a greater reduction in tumor size.


Assuntos
Melanoma , Vírus Oncolíticos , Camundongos , Animais , Camundongos Endogâmicos C57BL , Meliteno , Vírus Oncolíticos/genética , Imunoterapia , Melanoma/terapia , Microambiente Tumoral
3.
Molecules ; 28(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615529

RESUMO

The abuse and residues of antibiotics have a great impact on the environment and organisms, and their determination has become very important. Due to their low contents, varieties and complex matrices, effective recognition, separation and enrichment are usually required prior to determination. Molecularly imprinted polymers (MIPs), a kind of highly selective polymer prepared via molecular imprinting technology (MIT), are used widely in the analytical detection of antibiotics, as adsorbents of solid-phase extraction (SPE) and as recognition elements of sensors. Herein, recent advances in MIPs for antibiotic residue analysis are reviewed. Firstly, several new preparation techniques of MIPs for detecting antibiotics are briefly introduced, including surface imprinting, nanoimprinting, living/controlled radical polymerization, and multi-template imprinting, multi-functional monomer imprinting and dummy template imprinting. Secondly, several SPE modes based on MIPs are summarized, namely packed SPE, magnetic SPE, dispersive SPE, matrix solid-phase dispersive extraction, solid-phase microextraction, stir-bar sorptive extraction and pipette-tip SPE. Thirdly, the basic principles of MIP-based sensors and three sensing modes, including electrochemical sensing, optical sensing and mass sensing, are also outlined. Fourthly, the research progress on molecularly imprinted SPEs (MISPEs) and MIP-based electrochemical/optical/mass sensors for the detection of various antibiotic residues in environmental and food samples since 2018 are comprehensively reviewed, including sulfonamides, quinolones, ß-lactams and so on. Finally, the preparation and application prospects of MIPs for detecting antibiotics are outlined.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Antibacterianos , Extração em Fase Sólida/métodos , Microextração em Fase Sólida/métodos , Polímeros/química , Impressão Molecular/métodos
4.
J Neuroinflammation ; 19(1): 16, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022041

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor neuron system associated with both genetic and environmental risk factors. Infection with enteroviruses, including poliovirus and coxsackievirus, such as coxsackievirus B3 (CVB3), has been proposed as a possible causal/risk factor for ALS due to the evidence that enteroviruses can target motor neurons and establish a persistent infection in the central nervous system (CNS), and recent findings that enteroviral infection-induced molecular and pathological phenotypes closely resemble ALS. However, a causal relationship has not yet been affirmed. METHODS: Wild-type C57BL/6J and G85R mutant superoxide dismutase 1 (SOD1G85R) ALS mice were intracerebroventricularly infected with a sublethal dose of CVB3 or sham-infected. For a subset of mice, ribavirin (a broad-spectrum anti-RNA viral drug) was given subcutaneously during the acute or chronic stage of infection. Following viral infection, general activity and survival were monitored daily for up to week 60. Starting at week 20 post-infection (PI), motor functions were measured weekly. Mouse brains and/or spinal cords were harvested at day 10, week 20 and week 60 PI for histopathological evaluation of neurotoxicity, immunohistochemical staining of viral protein, neuroinflammatory/immune and ALS pathology markers, and NanoString and RT-qPCR analysis of inflammatory gene expression. RESULTS: We found that sublethal infection (mimicking chronic infection) of SOD1G85R ALS mice with CVB3 resulted in early onset and progressive motor dysfunction, and shortened lifespan, while similar viral infection in C57BL/6J, the background strain of SOD1G85R mice, did not significantly affect motor function and mortality as compared to mock infection within the timeframe of the current study (60 weeks PI). Furthermore, we showed that CVB3 infection led to a significant increase in proinflammatory gene expression and immune cell infiltration and induced ALS-related pathologies (i.e., TAR DNA-binding protein 43 (TDP-43) pathology and neuronal damage) in the CNS of both SOD1G85R and C57BL/6J mice. Finally, we discovered that early (day 1) but not late (day 15) administration of ribavirin could rescue ALS-like neuropathology and symptoms induced by CVB3 infection. CONCLUSIONS: Our study identifies a new risk factor that contributes to early onset and accelerated progression of ALS and offers opportunities for the development of novel targeted therapies.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Doenças Neurodegenerativas/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
5.
J Virol ; 95(12)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33827951

RESUMO

During viral infection, the dynamic virus-host relationship is constantly in play. Many cellular proteins, such as RNA-binding proteins (RBPs), have been shown to mediate antiviral responses during viral infection. Here, we report that the RBP FUS/TLS (fused in sarcoma/translocated in liposarcoma) acts as a host-restricting factor against infection with coxsackievirus B3 (CVB3). Mechanistically, we found that deletion of FUS leads to increased viral RNA transcription and enhanced internal ribosome entry site (IRES)-driven translation, with no apparent impact on viral RNA stability. We further demonstrated that FUS physically interacts with the viral genome, which may contribute to direct inhibition of viral RNA transcription/translation. Moreover, we identified a novel function for FUS in regulating host innate immune response. We show that in the absence of FUS, gene expression of type I interferons and proinflammatory cytokines elicited by viral or bacterial infection is significantly impaired. Emerging evidence suggests a role for stress granules (SGs) in antiviral innate immunity. We further reveal that knockout of FUS abolishes the ability to form SGs upon CVB3 infection or poly(I·C) treatment. Finally, we show that, to avoid FUS-mediated antiviral response and innate immunity, CVB3 infection results in cytoplasmic mislocalization and cleavage of FUS through the enzymatic activity of viral proteases. Together, our findings in this study identify FUS as a novel host antiviral factor which restricts CVB3 replication through direct inhibition of viral RNA transcription and protein translation and through regulation of host antiviral innate immunity.IMPORTANCE Enteroviruses are common human pathogens, including those that cause myocarditis (coxsackievirus B3 [CVB3]), poliomyelitis (poliovirus), and hand, foot, and mouth disease (enterovirus 71). Understanding the virus-host interaction is crucial for developing means of treating and preventing diseases caused by these pathogens. In this study, we explored the interplay between the host RNA-binding protein FUS/TLS and CVB3 and found that FUS/TLS restricts CVB3 replication through direct inhibition of viral RNA transcription/translation and through regulation of cellular antiviral innate immunity. To impede the antiviral role of FUS, CVB3 targets FUS for mislocalization and cleavage. Findings from this study provide novel insights into interactions between CVB3 and FUS, which may lead to novel therapeutic interventions against enterovirus-induced diseases.


Assuntos
Enterovirus Humano B/imunologia , Enterovirus Humano B/fisiologia , Imunidade Inata , Proteína FUS de Ligação a RNA/metabolismo , Proteases Virais 3C/metabolismo , Animais , Antivirais/farmacologia , Autofagia , Linhagem Celular , Cisteína Endopeptidases/metabolismo , Citocinas/biossíntese , Citocinas/genética , Citoplasma/metabolismo , Grânulos Citoplasmáticos/metabolismo , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Genoma Viral , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Interferon Tipo I/biossíntese , Interferon Tipo I/genética , Sítios Internos de Entrada Ribossomal , Camundongos , Neurônios Motores/virologia , Poli I-C/farmacologia , Biossíntese de Proteínas , RNA Viral/genética , RNA Viral/metabolismo , Proteína FUS de Ligação a RNA/genética , Estresse Fisiológico , Transcrição Gênica , Proteínas Virais/biossíntese , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
6.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361509

RESUMO

Ehrlichia chaffeensis, a tick-transmitted intraphagosomal bacterium, is the causative agent of human monocytic ehrlichiosis. The pathogen also infects several other vertebrate hosts. E. chaffeensis has a biphasic developmental cycle during its growth in vertebrate monocytes/macrophages and invertebrate tick cells. Host- and vector-specific differences in the gene expression from many genes of E. chaffeensis are well documented. It is unclear how the organism regulates gene expression during its developmental cycle and for its adaptation to vertebrate and tick host cell environments. We previously mapped promoters of several E. chaffeensis genes which are recognized by its only two sigma factors: σ32 and σ70. In the current study, we investigated in assessing five predicted E. chaffeensis transcription regulators; EcxR, CtrA, MerR, HU and Tr1 for their possible roles in regulating the pathogen gene expression. Promoter segments of three genes each transcribed with the RNA polymerase containing σ70 (HU, P28-Omp14 and P28-Omp19) and σ32 (ClpB, DnaK and GroES/L) were evaluated by employing multiple independent molecular methods. We report that EcxR binds to all six promoters tested. Promoter-specific binding of EcxR to several gene promoters results in varying levels of gene expression enhancement. This is the first detailed molecular characterization of transcription regulators where we identified EcxR as a gene regulator having multiple promoter-specific interactions.


Assuntos
Ehrlichia chaffeensis , Carrapatos , Animais , Humanos , Ehrlichia chaffeensis/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Monócitos/metabolismo , Fatores de Transcrição/metabolismo , Carrapatos/metabolismo
7.
Molecules ; 28(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36615491

RESUMO

Traditional Chinese medicine (TCM) is one of the most internationally competitive industries. In the context of TCM modernization and internationalization, TCM-related research studies have entered a fast track of development. At the same time, research of TCM is also faced with challenges, such as matrix complexity, component diversity and low level of active components. As an interdisciplinary technology, molecular imprinting technology (MIT) has gained popularity in TCM study, owing to the produced molecularly imprinted polymers (MIPs) possessing the unique features of structure predictability, recognition specificity and application universality, as well as physical robustness, thermal stability, low cost and easy preparation. Herein, we comprehensively review the recent advances of MIT for TCM studies since 2017, focusing on two main aspects including extraction/separation and purification and detection of active components, and identification analysis of hazardous components. The fundamentals of MIT are briefly outlined and emerging preparation techniques for MIPs applied in TCM are highlighted, such as surface imprinting, nanoimprinting and multitemplate and multifunctional monomer imprinting. Then, applications of MIPs in common active components research including flavonoids, alkaloids, terpenoids, glycosides and polyphenols, etc. are respectively summarized, followed by screening and enantioseparation. Related identification detection of hazardous components from TCM itself, illegal addition, or pollution residues (e.g., heavy metals, pesticides) are discussed. Moreover, the applications of MIT in new formulation of TCM, chiral drug resolution and detection of growing environment are summarized. Finally, we propose some issues still to be solved and future research directions to be expected of MIT for TCM studies.


Assuntos
Medicina Tradicional Chinesa , Impressão Molecular , Impressão Molecular/métodos , Polímeros/química , Flavonoides , Polifenóis , Polímeros Molecularmente Impressos
8.
J Neurosci ; 40(13): 2644-2662, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32066583

RESUMO

Yes-associated protein (YAP) transcriptional coactivator is negatively regulated by the Hippo pathway and functions in controlling the size of multiple organs, such as liver during development. However, it is not clear whether YAP signaling participates in the process of the formation of glia scars after spinal cord injury (SCI). In this study, we found that YAP was upregulated and activated in astrocytes of C57BL/6 male mice after SCI in a Hippo pathway-dependent manner. Conditional knockout (KO) of yap in astrocytes significantly inhibited astrocytic proliferation, impaired the formation of glial scars, inhibited the axonal regeneration, and impaired the behavioral recovery of C57BL/6 male mice after SCI. Mechanistically, the bFGF was upregulated after SCI and induced the activation of YAP through RhoA pathways, thereby promoting the formation of glial scars. Additionally, YAP promoted bFGF-induced proliferation by negatively controlling nuclear distribution of p27Kip1 mediated by CRM1. Finally, bFGF or XMU-MP-1 (an inhibitor of Hippo kinase MST1/2 to activate YAP) injection indeed activated YAP signaling and promoted the formation of glial scars and the functional recovery of mice after SCI. These findings suggest that YAP promotes the formation of glial scars and neural regeneration of mice after SCI, and that the bFGF-RhoA-YAP-p27Kip1 pathway positively regulates astrocytic proliferation after SCI.SIGNIFICANCE STATEMENT Glial scars play critical roles in neuronal regeneration of CNS injury diseases, such as spinal cord injury (SCI). Here, we provide evidence for the function of Yes-associated protein (YAP) in the formation of glial scars after SCI through regulation of astrocyte proliferation. As a downstream of bFGF (which is upregulated after SCI), YAP promotes the proliferation of astrocytes through negatively controlling nuclear distribution of p27Kip1 mediated by CRM1. Activation of YAP by bFGF or XMU-MP-1 injection promotes the formation of glial scar and the functional recovery of mice after SCI. These results suggest that the bFGF-RhoA-YAP-p27Kip1 axis for the formation of glial scars may be a potential therapeutic strategy for SCI patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Astrócitos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Gliose/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Proliferação de Células/fisiologia , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Gliose/genética , Gliose/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Recuperação de Função Fisiológica/fisiologia , Transdução de Sinais/fisiologia , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/patologia , Proteínas de Sinalização YAP
9.
Infect Immun ; 89(4)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33431703

RESUMO

Rickettsiae belong to the Anaplasmataceae family, which includes mostly tick-transmitted pathogens causing human, canine, and ruminant diseases. Biochemical characterization of the pathogens remains a major challenge because of their obligate parasitism. We investigated the use of an axenic medium for growth of two important pathogens-Anaplasma phagocytophilum and Ehrlichia chaffeensis-in host cell-free phagosomes. We recently reported that the axenic medium promotes protein and DNA biosynthesis in host cell-free replicating form of E. chaffeensis, although the bacterial replication is limited. We now tested the hypothesis that growth on axenic medium can be improved if host cell-free rickettsia-containing phagosomes are used. Purification of phagosomes from A. phagocytophilum- and E. chaffeensis-infected host cells was accomplished by density gradient centrifugation combined with magnet-assisted cell sorting. Protein and DNA synthesis was observed for both organisms in cell-free phagosomes with glucose-6-phosphate and/or ATP. The levels of protein and DNA synthesis were the highest for a medium pH of 7. The data demonstrate bacterial DNA and protein synthesis for the first time in host cell-free phagosomes for two rickettsial pathogens. The host cell support-free axenic growth of obligate pathogenic rickettsiae will be critical in advancing research goals in many important tick-borne diseases impacting human and animal health.


Assuntos
Anaplasma phagocytophilum/fisiologia , Cultura Axênica , Replicação do DNA , Ehrlichia chaffeensis/fisiologia , Fagossomos/microbiologia , Biossíntese de Proteínas , Sistema Livre de Células , Fracionamento Químico , Humanos , Concentração de Íons de Hidrogênio
10.
Biochem Biophys Res Commun ; 540: 75-82, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33450483

RESUMO

The ongoing pandemic of COVID-19 alongside the outbreaks of SARS in 2003 and MERS in 2012 underscore the significance to understand betacoronaviruses as a global health challenge. SARS-CoV-2, the etiological agent for COVID-19, has infected over 50 million individuals' worldwide with more than ∼1 million fatalities. Autophagy modulators have emerged as potential therapeutic candidates against SARS-CoV-2 but recent clinical setbacks urge for better understanding of viral subversion of autophagy. Using MHV-A59 as a model betacoronavirus, time-course infections revealed significant loss in the protein level of ULK1, a canonical autophagy-regulating kinase, and the concomitant appearance of a possible cleavage fragment. To investigate whether virus-encoded proteases target ULK1, we conducted in-vitro and cellular cleavage assays and identified ULK1 as a novel bona fide substrate of SARS-CoV-2 papain-like protease (PLpro). Mutagenesis studies discovered that ULK1 is cleaved at a conserved PLpro recognition sequence (LGGG) after G499, separating its N-terminal kinase domain from a C-terminal substrate recognition region. Over-expression of SARS-CoV-2 PLpro is sufficient to impair starvation-induced autophagy and disrupt formation of ULK1-ATG13 complex. Finally, we demonstrated a dual role for ULK1 in MHV-A59 replication, serving a pro-viral functions during early replication that is inactivated at late stages of infection. In conclusion, our study identified a new mechanism by which PLpro of betacoronaviruses induces viral pathogenesis by targeting cellular autophagy.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Proteases Semelhantes à Papaína de Coronavírus/metabolismo , SARS-CoV-2/enzimologia , Animais , Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Células Cultivadas , Camundongos
11.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445146

RESUMO

Ehrlichia chaffeensis causes human monocytic ehrlichiosis. Little is known about how this and other related tick-borne rickettsia pathogens maintain pH homeostasis in acidified phagosomes and the extracellular milieu. The membrane-bound sodium (cation)/proton antiporters are found in a wide range of organisms aiding pH homeostasis. We recently reported a mutation in an antiporter gene of E. chaffeensis (ECH_0379) which causes bacterial in vivo attenuation. The E. chaffeensis genome contains 10 protein coding sequences encoding for predicted antiporters. We report here that nine of these genes are transcribed during the bacterial growth in macrophages and tick cells. All E. chaffeensis antiporter genes functionally complemented antiporter deficient Escherichia coli. Antiporter activity for all predicted E. chaffeensis genes was observed at pH 5.5, while gene products of ECH_0179 and ECH_0379 were also active at pH 8.0, and ECH_0179 protein was complemented at pH 7.0. The antiporter activity was independently verified for the ECH_0379 protein by proteoliposome diffusion analysis. This is the first description of antiporters in E. chaffeensis and demonstrates that the pathogen contains multiple antiporters with varying biological functions, which are likely important for the pH homeostasis of the pathogen's replicating and infectious forms.


Assuntos
Antiporters/genética , Bactérias/genética , Proteínas de Bactérias/genética , Ehrlichia chaffeensis/genética , Genes Bacterianos/genética , Homeostase/genética , Sódio/metabolismo , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Macrófagos/metabolismo , Mutação/genética , Prótons
12.
Infect Immun ; 88(10)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747600

RESUMO

Ehrlichia chaffeensis, a tick-transmitted obligate intracellular rickettsial agent, causes human monocytic ehrlichiosis. In recent reports, we described substantial advances in developing random and targeted gene disruption methods to investigate the functions of E. chaffeensis genes. We reported earlier that the Himar1 transposon-based random mutagenesis is a valuable tool in defining E. chaffeensis genes critical for its persistent growth in vivo in reservoir and incidental hosts. The method also aided in extending studies focused on vaccine development and immunity. Here, we describe the generation and mapping of 55 new mutations. To define the critical nature of the bacterial genes, infection experiments were carried out in the canine host with pools of mutant organisms. Infection evaluation in the physiologically relevant host by molecular assays and by xenodiagnoses allowed the identification of many proteins critical for the pathogen's persistent in vivo growth. Genes encoding proteins involved in biotin biosynthesis, protein synthesis and fatty acid biosynthesis, DNA repair, electron transfer, and a component of a multidrug resistance (MDR) efflux pump were concluded to be essential for the pathogen's in vivo growth. Three known immunodominant membrane proteins, i.e., two 28-kDa outer membrane proteins (P28/OMP) and a 120-kDa surface protein, were also recognized as necessary for the pathogen's obligate intracellular life cycle. The discovery of many E. chaffeensis proteins crucial for its continuous in vivo growth will serve as a major resource for investigations aimed at defining pathogenesis and developing novel therapeutics for this and related pathogens of the rickettsial family Anaplasmataceae.


Assuntos
Ehrlichia chaffeensis/genética , Ehrlichiose/microbiologia , Genes Bacterianos , Animais , Proteínas de Bactérias/genética , Linhagem Celular , Cães , Ehrlichia chaffeensis/crescimento & desenvolvimento , Ehrlichia chaffeensis/patogenicidade , Ehrlichiose/transmissão , Biblioteca Gênica , Genoma Bacteriano/genética , Macrófagos/microbiologia , Mutagênese Insercional , Mutação , Carrapatos , Transcrição Gênica , Virulência/genética
13.
Glia ; 68(9): 1757-1774, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32057144

RESUMO

Olfactory ensheathing cells (OECs) are unique glial cells with axonal growth-promoting properties in the olfactory epithelium and olfactory bulb, covering the entire length of the olfactory nerve. The proliferation of OECs is necessary for the formation of the presumptive olfactory nerve layer (ONL) during development and OECs transplantation. However, the molecular mechanism underlying the regulation of OEC proliferation in the ONL still remains unknown. In the present study, we examined the role of sphingosine 1-phosphate (S1P) and S1P receptors (S1PRs) on OEC proliferation. Initially, reverse transcription-PCR (RT-PCR), western blot and immunostaining revealed that S1PRs were highly expressed in the OECs in vitro and in vivo. Furthermore, we found that S1P treatment promoted the proliferation of primary cultured OECs mediated by S1PR1. Mechanistically, yes-associated protein (YAP) was required for S1P-induced OEC proliferation through RhoA signaling. Finally, conditional knockout of YAP in OECs reduced OEC proliferation in ONL, which impaired the axonal projection and growth of olfactory sensory neurons, and olfactory functions. Taken together, these results reveal a previously unrecognized function of S1P/RhoA/YAP pathway in the proliferation of OECs, contributing to the formation of ONL and the projection, growth, and function of olfactory sensory neurons during development.


Assuntos
Neuroglia , Nervo Olfatório , Proliferação de Células , Células Cultivadas , Lisofosfolipídeos , Bulbo Olfatório , Esfingosina/análogos & derivados
14.
Electrophoresis ; 41(23): 1991-1999, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32839980

RESUMO

A micellar electrokinetic capillary chromatography (MEKC) method with ultraviolet visible (UV) detection was used for the determination of 1,7-naphthalenediol, 2,3-naphthalenediol, 1,5-naphthalenediol, and 2,7-naphthalenediol in cosmetics. The current method for their determination in various cosmetics is high-performance liquid chromatography (HPLC). Separation conditions affecting the MEKC method were optimized as 20 mM Na2 B4 O7 -50mM SDS, pH 9.8, with 22 kV applied voltage and UV detection at 230 nm. Under optimal conditions, electrophoretic analysis was completed in less than 6 min, with limit of detection (LOD) of 0.070-0.19 µg/mL and limit of quantitation (LOQ) of 0.23-0.63 µg/mL. A good linear relationship (r2 > 0.99) was obtained at the range of 0.75-20 µg/mL. Recoveries for the four naphthalenediols in lotion, loose powder, and sun cream are between 91.2-107.2% with relative standard deviation (RSD) less than 4.04%. The method has been successfully applied to the determination of the four naphthalenediols in different kinds of cosmetics. A comparison with HPLC-UV method was also carried out according to the National Standards of the People's Republic of China. The results obtained by MEKC and HPLC methods are comparable, but the proposed MEKC method can help us obtain a much shorter detection time and low cost.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Capilar Eletrocinética Micelar/métodos , Cosméticos/química , Naftóis/análise , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes
15.
Analyst ; 145(5): 1825-1832, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31957779

RESUMO

A twin enrichment method based on offline dispersive liquid-liquid microextraction (DLLME) coupled with online field-amplified sample injection (FASI) was developed for the simultaneous determination of four sulfonamide (SA) antibiotics, including sulfamethazine (SMZ), sulfamerazine (SMR), sulfadizine (SDZ) and sulfacetamide (SFA), in different environmental waters, followed by capillary electrophoresis (CE). Various parameters that affected the separation performance of CE and the enrichment efficiencies of DLLME and FASI were optimized in detail, and excellent CE separation was attained within 6 min. The DLLME-FASI-CE offered high sensitivity enrichment factors of 206, 166, 185 and 150 for SMZ, SMR, SDZ and SFA, respectively. Highly sensitive detection was realized with low limits of detection (LODs), which ranged from 2.0-23.0, 2.2-26.0 and 4.3-63.0 ng mL-1 in tap water, lake water and seawater, respectively, as well as limits of quantification (LOQs) within 6.0-63.0, 7.4-96.0 and 14.0-201.0 ng mL-1, respectively. Satisfactory recoveries in the range of 91-108% were obtained with the three spiked environmental water samples, and the relative standard deviations were from 1.09-7.45%. The simple effective twin enrichment method provided promising perspective for CE determination of SAs in complicated aqueous matrices, with rapidity, sensitivity, and accuracy.

16.
J Sci Food Agric ; 100(2): 811-816, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31617212

RESUMO

BACKGROUND: Natamycin is often added to pastries, cheeses, and beverages. The residual amount of natamycin should be less than 10 mg kg-1 . The current method for its determination in various foodstuffs is high-performance liquid chromatography (HPLC). Capillary electrophoresis (CE) is a simple, fast, and environmentally friendly method with low reagent consumption and comparable separation performance. However, no reports were found on the determination of natamycin in foods by CE. A CE method to determine natamycin is therefore sought. RESULTS: Natamycin in foods was determined by the capillary zone electrophoresis (CZE) method with ultraviolet-visible (UV) detection. Separation conditions were optimized as 20 mM Na2 HPO4 , pH 9.2, with 25 kV applied voltage, and UV detection at 306 nm. Under optimal conditions, electrophoretic analysis was completed in less than 4 min, with a limit of detection (LOD) of 0.065 µg mL-1 and limit of quantitation (LOQ) of 0.22 µg mL-1 . A good linear relationship (r2 = 0.999) was obtained at the range of 0.1-25 µg mL-1 . A comparison with the HPLC-UV method was also carried out according to the National Standards of the People's Republic of China. CONCLUSION: The results obtained by the CZE and HPLC methods are comparable but the proposed CZE method can help us obtain a shorter detection time at low cost. © 2019 Society of Chemical Industry.


Assuntos
Bebidas/análise , Queijo/análise , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese Capilar/métodos , Conservantes de Alimentos/análise , Natamicina/análise , China , Limite de Detecção
17.
Infect Immun ; 87(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30396898

RESUMO

Rocky Mountain spotted fever (RMSF) is a potentially fatal tick-borne disease in people and dogs. RMSF is reported in the United States and several countries in North, Central, and South America. The causative agent of this disease, Rickettsia rickettsii, is transmitted by several species of ticks, including Dermacentor andersoni, Rhipicephalus sanguineus, and Amblyomma americanum RMSF clinical signs generally include fever, headache, nausea, vomiting, muscle pain, lack of appetite, and rash. If untreated, it can quickly progress into a life-threatening illness in people and dogs, with high fatality rates ranging from 30 to 80%. While RMSF has been known for over a century, recent epidemiological data suggest that the numbers of documented cases and the fatality rates remain high in people, particularly during the last two decades in parts of North America. Currently, there are no vaccines available to prevent RMSF in either dogs or people. In this study, we investigated the efficacies of two experimental vaccines, a subunit vaccine containing two recombinant outer membrane proteins as recombinant antigens (RCA) and a whole-cell inactivated antigen vaccine (WCA), in conferring protection against virulent R. rickettsii infection challenge in a newly established canine model for RMSF. Dogs vaccinated with WCA were protected from RMSF, whereas those receiving RCA developed disease similar to that of nonvaccinated R. rickettsii-infected dogs. WCA also reduced the pathogen loads to nearly undetected levels in the blood, lungs, liver, spleen, and brain and induced bacterial antigen-specific immune responses. This study provides the first evidence of the protective ability of WCA against RMSF in dogs.


Assuntos
Antígenos de Bactérias/imunologia , Doenças do Cão , Rickettsia rickettsii/imunologia , Vacinas Antirrickéttsia/imunologia , Febre Maculosa das Montanhas Rochosas , Animais , Proteínas da Membrana Bacteriana Externa/imunologia , Doenças do Cão/imunologia , Doenças do Cão/microbiologia , Doenças do Cão/prevenção & controle , Cães , Proteínas Recombinantes/imunologia , Febre Maculosa das Montanhas Rochosas/imunologia , Febre Maculosa das Montanhas Rochosas/prevenção & controle , Febre Maculosa das Montanhas Rochosas/veterinária
18.
Am J Pathol ; 188(12): 2853-2862, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30273599

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that primarily affects motor neurons in the cerebral cortex, brainstem, and spinal cord, leading to progressive paralysis and eventual death. Approximately 95% of all ALS cases are sporadic without known causes. Enteroviruses have been suspected to play a role in ALS because of their ability to target motor neurons and to cause muscle weakness and paralysis. In vitro enteroviral infection results in cytoplasmic aggregation and cleavage of transactive response DNA binding protein-43, a pathologic hallmark of ALS. However, whether enteroviral infection can induce ALS-like pathologies in vivo remains to be characterized. In this study, neonatal BALB/C mice were intracranially inoculated with either a recombinant coxsackievirus B3 expressing enhanced green fluorescent protein or mock-infected for 2, 5, 10, 30, and 90 days. Histologic and immunohistochemical analysis of brain tissues demonstrated sustained inflammation (microglia and astrogliosis) and lesions in multiple regions of the brain (hippocampus, cerebral cortex, striatum, olfactory bulb, and putamen) in parallel with virus detection as early as 2 days for up to 90 days after infection. Most notably, ALS-like pathologies, including cytoplasmic mislocalization of transactive response DNA binding protein-43, p62-, and ubiquitin-positive inclusions, were observed in the areas of infection. These data provide the first pathologic evidence to support a possible link between enteroviral infection and ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Encéfalo/imunologia , Infecções por Coxsackievirus/complicações , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Enterovirus Humano B/patogenicidade , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/microbiologia , Células Cultivadas , Infecções por Coxsackievirus/virologia , Camundongos , Camundongos Endogâmicos BALB C , Transporte Proteico
19.
Electrophoresis ; 40(14): 1771-1778, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31090073

RESUMO

A sensitive method of CZE-ultraviolet (UV) detection based on the on-line preconcentration strategy of field-amplified sample injection (FASI) was developed for the simultaneous determination of five kinds of chlorophenols (CPs) namely 4-chlorophenol (4-CP), 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TCP), and 2,6-dichlorophenol (2,6-DCP) in water samples. Several parameters affecting CZE and FASI conditions were systematically investigated. Under the optimal conditions, sensitivity enhancement factors for 4-CP, 2-CP, 2,4-DCP, 2,4,6-TCP, and 2,6-DCP were 9, 27, 35, 43, and 43 folds, respectively, compared with the direct CZE, and the baseline separation was achieved within 5 min. Then, the developed FASI-CZE-UV method was applied to tap and lake water samples for the five CPs determination. The LODs (S/N = 3) were 0.0018-0.019 µg/mL and 0.0089-0.029 µg/mL in tap water and lake water, respectively. The values of LOQs in tap water (0.006-0.0074 µg/mL) were much lower than the maximum permissible concentrations of 2,4,6-TCP, 2,4-DCP, and 2-CP in drinking water stipulated by World Health Organization (WHO) namely 0.3, 0.04, and 0.01 µg/mL, respectively, and thereby the method was suitable to detect the CPs according to WHO guidelines. Furthermore, the method attained high recoveries in the range of 83.0-119.0% at three spiking levels of five CPs in the two types of water samples, with relative standard deviations of 0.37-8.58%. The developed method was proved to be a simple, sensitive, highly automated, and efficient alternative to CPs determination in real water samples.


Assuntos
Clorofenóis/análise , Eletroforese Capilar , Água Potável/química , Eletroforese Capilar/métodos , Limite de Detecção , Poluentes Químicos da Água/análise
20.
Analyst ; 144(14): 4425-4431, 2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31215573

RESUMO

Electrochemiluminescence (ECL) sensors are useful for the detection of heavy metal pollutants, in particular mercury(ii) ions, in water samples. We demonstrate the superior sensing performance of Hg2+ using a nanocomposite material based on carbon nitride nanosheets (CNNSs) and copper nanoclusters functionalized by dithiothreitol, which not only stabilizes the clusters, but also improves the sensitivity of Hg2+ detection. The ECL mechanism is related to the reaction of the nanocomposite with K2S2O8 in the electrochemical system, while the presence of Hg2+ leads to quenching of its excited state, and the suppression of the formation of anion-radicals. The Hg(ii) sensor presented here is cheap and fast, and shows high selectivity for the detection of Hg2+ on the background of other mono-, di-, and trivalent ions, with a linear range of 0.5-10 nM and the detection limit as low as 0.01 nM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA