Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 519
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(50): e2220496120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064514

RESUMO

Massive GGGGCC (G4C2) repeat expansion in C9orf72 and the resulting loss of C9orf72 function are the key features of ~50% of inherited amyotrophic lateral sclerosis and frontotemporal dementia cases. However, the biological function of C9orf72 remains unclear. We previously found that C9orf72 can form a stable GTPase activating protein (GAP) complex with SMCR8 (Smith-Magenis chromosome region 8). Herein, we report that the C9orf72-SMCR8 complex is a major negative regulator of primary ciliogenesis, abnormalities in which lead to ciliopathies. Mechanistically, the C9orf72-SMCR8 complex suppresses the primary cilium as a RAB8A GAP. Moreover, based on biochemical analysis, we found that C9orf72 is the RAB8A binding subunit and that SMCR8 is the GAP subunit in the complex. We further found that the C9orf72-SMCR8 complex suppressed the primary cilium in multiple tissues from mice, including but not limited to the brain, kidney, and spleen. Importantly, cells with C9orf72 or SMCR8 knocked out were more sensitive to hedgehog signaling. These results reveal the unexpected impact of C9orf72 on primary ciliogenesis and elucidate the pathogenesis of diseases caused by the loss of C9orf72 function.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Cílios , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Cílios/metabolismo , Expansão das Repetições de DNA , Demência Frontotemporal/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Células HEK293
2.
Small ; : e2405627, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39139012

RESUMO

Photo-accelerated rechargeable batteries play a crucial role in fully utilizing solar energy, but it is still a challenge to fabricate dual-functional photoelectrodes with simultaneous high solar energy harvesting and storage. This work reports an innovative photo-accelerated zinc-ion battery (PAZIB) featuring a photocathode with a SnO2@MnO2 heterojunction. The design ingeniously combines the excellent electronic conductivity of SnO2 with the high energy storage and light absorption capacities of MnO2. The capacity of the SnO2@MnO2-based PAZIB is ≈598 mAh g-1 with a high photo-conversion efficiency of 1.2% under illumination at 0.1 A g-1, which is superior to that of most reported MnO2-based ZIB. The boosting performance is attributed to the synergistic effect of enhanced photogenerated carrier separation efficiency, improved conductivity, and promoted charge transfer by the SnO2@MnO2 heterojunction, which is confirmed by systematic experiments and theoretical simulations. This work provides valuable insights into the development of dual-function photocathodes for effective solar energy utilization.

3.
Magn Reson Med ; 92(3): 1048-1063, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38725383

RESUMO

PURPOSE: To introduce a novel deep model-based architecture (DMBA), SPICER, that uses pairs of noisy and undersampled k-space measurements of the same object to jointly train a model for MRI reconstruction and automatic coil sensitivity estimation. METHODS: SPICER consists of two modules to simultaneously reconstructs accurate MR images and estimates high-quality coil sensitivity maps (CSMs). The first module, CSM estimation module, uses a convolutional neural network (CNN) to estimate CSMs from the raw measurements. The second module, DMBA-based MRI reconstruction module, forms reconstructed images from the input measurements and the estimated CSMs using both the physical measurement model and learned CNN prior. With the benefit of our self-supervised learning strategy, SPICER can be efficiently trained without any fully sampled reference data. RESULTS: We validate SPICER on both open-access datasets and experimentally collected data, showing that it can achieve state-of-the-art performance in highly accelerated data acquisition settings (up to 10 × $$ 10\times $$ ). Our results also highlight the importance of different modules of SPICER-including the DMBA, the CSM estimation, and the SPICER training loss-on the final performance of the method. Moreover, SPICER can estimate better CSMs than pre-estimation methods especially when the ACS data is limited. CONCLUSION: Despite being trained on noisy undersampled data, SPICER can reconstruct high-quality images and CSMs in highly undersampled settings, which outperforms other self-supervised learning methods and matches the performance of the well-known E2E-VarNet trained on fully sampled ground-truth data.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina Supervisionado , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Imagens de Fantasmas
4.
J Bioenerg Biomembr ; 56(3): 261-271, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38421527

RESUMO

Downregulation of circ_0044226 has been demonstrated to reduce pulmonary fibrosis, but the role of circ_0044226 in liver fibrosis remains to be explored. In this work, we found that circ_0044226 expression was upregulated during liver fibrosis. Knockdown of circ_0044226 inhibited proliferation, promoted autophagy and apoptosis of hepatic stellate cell LX-2. Bioinformatic analysis and dual luciferase reporter assays confirmed the interaction between circ_0044226, miR-4677-3p and SEC61G. Mechanistically, knockdown of circ_0044226 suppressed SEC61G expression by releasing miR-4677-3p, thereby enhancing endoplasmic reticulum stress. Overexpression of SEC61G or endoplasmic reticulum stress inhibitor 4-phenylbutiric acid partially reversed the effect of knockdown circ_0044226 on LX-2 cell function. In vivo experiments showed that inhibition of circ_0044226 attenuated CCL4-induced liver fibrosis in mice. These imply that circ_0044226 may be a potential target for the treatment of liver fibrosis.


Assuntos
Apoptose , Autofagia , Estresse do Retículo Endoplasmático , Células Estreladas do Fígado , MicroRNAs , RNA Circular , Animais , Humanos , Camundongos , Autofagia/fisiologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/genética , MicroRNAs/metabolismo , MicroRNAs/genética , RNA Circular/genética , RNA Circular/metabolismo , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo
5.
Plant Cell Environ ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39440658

RESUMO

Manganese (Mn) is an indispensable mineral for plant growth and development. However, plants cultivated in acidic and poorly drained soils are vulnerable to Mn2+ toxicity due to its heightened increased bioavailability. Despite the crucial roles of the Rho of plant (ROP) GTPases in various cellular processes, their precise function in regulating Mn homeostasis remains elusive. In this study, we unveil a novel ROP6 GTPase signalling pathway that profoundly influences Mn phytotoxicity tolerance in Arabidopsis. Remarkably, the rop6 and dominant-negative ROP6 (rop6DN) mutant plants displayed a dramatically sensitive phenotype to Mn toxicity, whereas ROP6-overexpression and constitutively activated ROP6 (rop6CA) lines exhibited enhanced Mn stress tolerance. Immunoblot analysis corroborated that the ROP6 protein, especially the active form of ROP6, increased in abundance in the presence of high Mn levels. Further, we identified that ROP6 physically interacted and colocalized with Metal Tolerance Protein 8 (MTP8) in vivo. Mn transport complementation assays in yeast, combined with biochemical analyses, emphasized the essentiality of ROP6 for MTP8's transport activity. In addition, genetic analyses indicated that ROP6 acted upstream of MTP8 in the regulatory cascade. Collectively, our findings elucidate that ROP6 GTPase signalling positively modulates and enhances Mn stress tolerance in plants.

6.
Opt Express ; 32(7): 12537-12550, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38571074

RESUMO

Magnetorheological finishing (MRF) technology is characterized by its high convergence rate and minimal subsurface damage as advantages. However, the non-Gaussian type tool influence function (TIF) it generates may cause mid-frequency errors and oriented surface texture issues. Magnetorheological precession finishing (MRPF) technology capable of generating Gaussian-like removal functions, lacks a clearly defined removal function model. This study acquired polishing spots in tilted polishing, discrete precession, and continuous precession modes via fixed-point polishing experiments. Using Multiphysics simulation software, stress and velocity distribution in the contact area were simulated. A TIF model, incorporating the synergistic effects of pressure and shear force and multiple influence coefficients, was proposed based on velocity characteristics across the three modes. To accurately predict the TIF, surface topographies with varying coefficients were constructed using this model, analyzing the coefficients' impact on the TIF profile. Optimal coefficients were identified using a least fit error algorithm. Further analysis of the TIF's internal textures revealed that the precession mode of MRPF yields superior surface quality, thereby elucidating the material removal mechanism of MRPF and laying a theoretical groundwork for advancing processing technologies.

7.
Toxicol Appl Pharmacol ; 483: 116816, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38218207

RESUMO

Phthalates (PEs), such as di(2-ethylhexyl) phthalate (DEHP), dibutyl phthalate (DBP) and butyl benzyl phthalate (BBP) could cause reproductive and developmental toxicities, while human beings are increasingly exposed to them at low-doses. Phytochemical quercetin (Que) is a flavonoid that has estrogenic effect, anti-inflammatory and anti-oxidant effects. This study was conducted to assess the alleviative effect of Que. on male reproductive toxicity induced by the mixture of three commonly used PEs (MPEs) at low-dose in rats, and explore the underlying mechanism. Male rats were treated with MPEs (16 mg/kg/day) and/or Que. (50 mg/kg/d) for 91 days. The results showed that MPEs exposure caused male reproductive injuries, such as decreased serum sex hormones levels, abnormal testicular pathological structure, increased abnormal sperm rate and changed expressions of PIWIL1 and PIWIL2. Furthermore, MPEs also changed the expression of steroidogenic proteins in steroid hormone metabolism, including StAR, CYP11A1, CYP17A1, 17ß-HSD, CYP19A1. However, the alterations of these parameters were reversed by Que. MPEs caused male reproductive injuries in rats; Que. inhibited MPEs' male reproductive toxicity, which might relate to the improvement of testosterone biosynthesis.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Ratos , Masculino , Animais , Quercetina/farmacologia , Testosterona , Ratos Sprague-Dawley , Sêmen/metabolismo , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/metabolismo , Testículo , Dietilexilftalato/toxicidade , Proteínas Argonautas/metabolismo , Proteínas Argonautas/farmacologia
8.
Opt Lett ; 49(12): 3464-3467, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875646

RESUMO

Existing polarimetry, mainly focusing on harmonic generations, overlooks the differences in retardance (DRs) caused by illuminations with different wavelengths in nonlinear processes, consequently falling short in accuracy beyond frequency doubling. In this Letter, with DRs considered, we propose a universal nonlinear Stokes-Mueller (NSM) polarimetry design involving illuminations with different wavelengths. Then, we optimize the NSM measurement model, applied to sum-frequency generation (SFG) and difference frequency generation. To demonstrate the necessity of consideration of DRs, the processes of polarization measurement for SFG are simulated, where the condition number decreases by 51.2%, and the root mean square error of the nonlinear Mueller matrix decreases by 20.48%.

9.
Brain Behav Immun ; 117: 270-282, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38211635

RESUMO

Parkinson's disease (PD) is intricately linked to abnormal gut microbiota, yet the specific microbiota influencing clinical outcomes remain poorly understood. Our study identified a deficiency in the microbiota genus Blautia and a reduction in fecal short-chain fatty acid (SCFA) butyrate level in PD patients compared to healthy controls. The abundance of Blautia correlated with the clinical severity of PD. Supplementation with butyrate-producing bacterium B. producta demonstrated neuroprotective effects, attenuating neuroinflammation and dopaminergic neuronal death in mice, consequently ameliorating motor dysfunction. A pivotal inflammatory signaling pathway, the RAS-related pathway, modulated by butyrate, emerged as a key mechanism inhibiting microglial activation in PD. The change of RAS-NF-κB pathway in PD patients was observed. Furthermore, B. producta-derived butyrate demonstrated the inhibition of microglial activation in PD through regulation of the RAS-NF-κB pathway. These findings elucidate the causal relationship between specific gut microbiota and PD, presenting a novel microbiota-based treatment perspective for PD.


Assuntos
Clostridiales , Microbiota , Doença de Parkinson , Humanos , Animais , Camundongos , Microglia , Doenças Neuroinflamatórias , NF-kappa B , Butiratos
10.
Nanotechnology ; 36(1)2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39374624

RESUMO

Nanoscale materials tend to have a single crystal domain, leading to not only size dependence but also orientation dependence of their mechanical properties. Recently, we developed a microscopic nanomechanical measurement method (MNMM), which enabled us to obtain equivalent spring constants (force gradients) of nanocontacts (NCs) while observing their atomic structures by transmission electron microscopy (TEM). Therein, we evaluated Young's modulus based on a model that a newly introduced layer at the thinnest section of a NC determined the change in the measured equivalent spring constant, and discussed their size dependence. However, this model is not general for other nanomaterials that do not exhibit the introduction of a new atomic layer while stretching. In this study, using MNMM, we propose a new analytical method to directly retrieve the local Young's modulus of nanomaterials by measuring initial lattice spacing and its displacement of a local region in the TEM image during the stretching of the NC. This reveals the size dependence of local Young's modulus at various positions of the NC at once. As a result, our estimated Young's modulus for a gold [111] NC showed a size dependence similar to the one previously reported. This indicates that this analytical method benefits in revealing the mechanical properties of not only nanomaterials but also structurally heterogeneous materials such as high-entropy alloys.

11.
Cereb Cortex ; 33(10): 5863-5874, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-36795038

RESUMO

The cortical distribution and functional role of cholecystokinin (CCK) are largely unknown. Here, a CCK receptor antagonist challenge paradigm was developed to assess functional connectivity and neuronal responses. Structural-functional magnetic resonance imaging and calcium imaging were undertaken in environmental enrichment (EE) and standard environment (SE) groups (naïve adult male mice, n = 59, C57BL/B6J, P = 60). Functional connectivity network-based statistics and pseudo-demarcation Voronoi tessellations to cluster calcium signals were used to derive region of interest metrics based on calcium transients, firing rate, and location. The CCK challenge elicited robust changes to structural-functional networks, decreased neuronal calcium transients, and max firing rate (5 s) of dorsal hippocampus in SE mice. However, the functional changes were not observed in EE mice, while the decreased neuronal calcium transients and max firing rate (5 s) were similar to SE mice. Decreased gray matter alterations were observed in multiple brain regions in the SE group due to CCK challenge, while no effect was observed in the EE group. The networks most affected by CCK challenge in SE included within isocortex, isocortex to olfactory, isocortex to striatum, olfactory to midbrain, and olfactory to thalamus. The EE group did not experience network changes in functional connectivity due to CCK challenge. Interestingly, calcium imaging revealed a significant decrease in transients and max firing rate (5 s) in the dorsal CA1 hippocampus subregion after CCK challenge in EE. Overall, CCK receptor antagonists affected brain-wide structural-functional connectivity within the isocortex, in addition to eliciting decreased neuronal calcium transients and max firing rate (5 s) in CA1 of the hippocampus. Future studies should investigate the CCK functional networks and how these processes affect isocortex modulation. Significance Statement  Cholecystokinin is a neuropeptide predominately found in the gastrointestinal system. Albeit abundantly expressed in neurons, the role and distribution of cholecystokinin are largely unknown. Here, we demonstrate cholecystokinin affects brain-wide structural-functional networks within the isocortex. In the hippocampus, the cholecystokinin receptor antagonist challenge decreases neuronal calcium transients and max firing rate (5 s) in CA1. We further demonstrate that mice in environmental enrichment do not experience functional network changes to the CCK receptor antagonist challenge. Environmental enrichment may afford protection to the alterations observed in control mice due to CCK. Our results suggest that cholecystokinin is distributed throughout the brain, interacts in the isocortex, and demonstrates an unexpected functional network stability for enriched mice.


Assuntos
Colecistocinina , Conectoma , Camundongos , Masculino , Animais , Receptores da Colecistocinina , Cálcio , Camundongos Endogâmicos C57BL , Hipocampo
12.
Int J Hyperthermia ; 41(1): 2316097, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38360570

RESUMO

PURPOSE: To investigate the value of three-dimensional ultrasound fusion imaging (3DUS FI) technique for guiding needle placement in hepatocellular carcinoma (HCC) thermal ablation. METHODS: A total of 57 patients with 60 HCCs with 3DUS FI-guided thermal ablation were retrospectively included in the study. 3DUS volume data of liver were acquired preoperatively by freehand scanning with the tumor and predetermined 5 mm ablative margin automatically segmented. Plan of needle placement was made through a predetermined simulated ablation zone to ensure a 5 mm ablative margin with the coverage rate toward tumor and ablative margin. With real-time ultrasound and 3DUS fusion imaging, ablation needles were placed according to the plan. After ablation, the ablative margin was immediately evaluated by contrast-enhanced ultrasound and 3DUS fusion imaging. The rate of adequate ablative margin, complete response (CR), local tumor progression (LTP), disease-free survival (DFS), and overall survival (OS) was evaluated. RESULTS: According to postoperative contrast-enhanced CT or MR imaging, the complete response rate was 100% (60/60), and 83% of tumors (30/36) achieved adequate ablative margin (>5 mm) three-dimensionally. During the follow-up period of 6.0-42.6 months, LTP occurred in 5 lesions, with 1- and 2-year LTP rates being 7.0% and 9.4%. The 1- and 2-year DFS rates were 76.1% and 65.6%, and 1- and 2-year OS rates were 98.1% and 94.0%. No major complications or ablation-related deaths were observed in any patients. CONCLUSIONS: Three-dimensional ultrasound fusion imaging technique may improve the needle placement of thermal ablation for HCC and reduce the rate of LTP.


Assuntos
Carcinoma Hepatocelular , Ablação por Cateter , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Meios de Contraste , Ultrassonografia/métodos , Imageamento Tridimensional , Ablação por Cateter/métodos , Resultado do Tratamento
13.
Ecotoxicol Environ Saf ; 270: 115920, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171105

RESUMO

Phthalates (PEs) are widely used plasticizers in polymer products, and humans are increasingly exposed to them. This study was designed to investigate the alleviative effect of phytochemicals quercetin (Que) against male reproductive toxicity caused by the mixture of three commonly used PEs (MPEs), and further to explore the underlying mechanism. Forty-eight male SD rats were randomly and evenly divided into control group, Que group, MPEs group and MPEs+Que group (n = 12); The oral exposure doses of MPEs and Que were 450 mg/kg/d and 50 mg/kg/d, respectively. After 91 days of continuous intervention, compared with control group, the testes weight, epididymis weight, serum sex hormones, and anogenital distance were significantly decreased in MPEs group (P < 0.05); Testicular histopathological observation showed that all seminiferous tubules were atrophy, leydig cells were hyperplasia, spermatogenic cells growth were arrested in MPEs group. Ultrastructural observation of testicular germ cells showed that the edges of the nuclear membranes were indistinct, and the mitochondria were severely damaged with the cristae disrupted, decreased or even disappeared in MPEs group. Immunohistochemistry and Western blot analysis showed that testicular CYP11A1, CYP17A1 and 17ß-HSD were up-regulated, while StAR, PIWIL1 and PIWIL2 were down-regulated in MPEs group (P < 0.05); However, the alterations of these parameters were restored in MPEs+Que group. The results indicated MPEs disturbed steroid hormone metabolism, and caused male reproductive injuries; whereas, Que could inhibit MPEs' male reproductive toxicity, which might relate to the restored regulation of steroid hormone metabolism.


Assuntos
Ácidos Ftálicos , Quercetina , Testículo , Humanos , Ratos , Masculino , Animais , Quercetina/farmacologia , Ratos Sprague-Dawley , Hormônios Esteroides Gonadais/metabolismo , Esteroides/metabolismo , Testosterona , Proteínas Argonautas/metabolismo , Proteínas Argonautas/farmacologia
14.
Int J Psychiatry Med ; : 912174241262120, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904249

RESUMO

OBJECTIVE: Job burnout among anesthesiologists has been consistently high. This study evaluated the association of calcium and vitamin D supplementation with burnout among Chinese anesthesiologists. METHOD: A cross-sectional online survey was conducted during April and May 2023. Burnout was evaluated using the Maslach Burnout Inventory, which assesses emotional exhaustion, depersonalization, and low personal accomplishment. Data on calcium and vitamin D supplementations were self-reported. Sociodemographic information and medical history were also assessed. Binary and ordinal logistic regression were used to evaluate the risk of burnout and burnout levels, respectively. The relative excess risk due to interaction and the attributable proportion due to interaction were examined to determine the synergistic effects of calcium and vitamin D supplementations on burnout risk. RESULTS: Among the 4222 invited anesthesiologists, 3766 submitted eligible questionnaires. Approximately 49.8% met the criteria for general burnout. Among anesthesiologists with burnout, 58.4% experienced emotional exhaustion, 35.8% depersonalization, and 61.2% low personal accomplishment. Anesthesiologists receiving calcium supplementation had a decreased risk of emotional exhaustion (OR = .83, 95% CI = .70-.99). Supplementation of vitamin D with or without calcium was not associated with overall burnout and any of its dimensions. No additive interaction of calcium and vitamin D on burnout was observed. CONCLUSIONS: Job burnout among anesthesiologists is of concern in China. Burnout is negatively associated with calcium supplementation but not with vitamin D. Further research is warranted to confirm the mechanism and causal relationship.

15.
J Am Chem Soc ; 145(36): 19542-19553, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37639380

RESUMO

Cu-catalyzed highly stereoselective and enantiodivergent syntheses of (Z)- or (E)-ß,γ-unsaturated ketones from 1,3-butadienyl silanes are developed. The nature of the silyl group of the dienes has a significant impact on the stereo- and enantioselectivity of the reactions. Under the developed catalytic systems, the reactions of acyl fluorides with phenyldiemthylsilyl-substituted 1,3-diene gave (Z)-ß,γ-unsaturated ketones bearing an α-tertiary stereogenic center with excellent enantioselectivities and high Z-selectivities, where the reactions with triisopropylsilyl-substituted 1,3-butadiene formed (E)-ß,γ-unsaturated ketones with high optical purities and excellent E-selectivities. The products generated from the reactions contain three functional groups with orthogonal chemical reactivities, which can undergo a variety of transformations to afford synthetically valuable intermediates.

16.
New Phytol ; 238(1): 313-331, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36567524

RESUMO

Cadmium (Cd) is a toxic heavy element for plant growth and development, and plants have evolved many strategies to cope with Cd stress. However, the mechanisms how plants sense Cd stress and regulate the function of transporters remain very rudimentary. Here, we found that Cd stress induces obvious Ca2+ signals in Arabidopsis roots. Furthermore, we identified the calcium-dependent protein kinases CPK21 and CPK23 that interacted with the Cd transporter NRAMP6 through a variety of protein interaction techniques. Then, we confirmed that the cpk21 23 double mutants significantly enhanced the sensitive phenotype of cpk23 single mutant under Cd stress, while the overexpression and continuous activation of CPK21 and CPK23 enhanced plants tolerance to Cd stress. Multiple biochemical and physiological analyses in yeast and plants demonstrated that CPK21/23 phosphorylate NRAMP6 primarily at Ser489 and Thr505 to inhibit the Cd transport activity of NRAMP6, thereby improving the Cd tolerance of plants. Taken together, we found a plasma membrane-associated calcium signaling that modulates Cd tolerance. These results provide new insights into the molecular breeding of crop tolerance to Cd stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cádmio , Cálcio , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
17.
New Phytol ; 240(2): 727-743, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37553956

RESUMO

Although phosphorus is one of the most important essential elements for plant growth and development, the epigenetic regulation of inorganic phosphate (Pi) signaling is poorly understood. In this study, we investigated the biological function and mode of action of the high-mobility-group box 1 protein OsHMGB1 in rice (Oryza sativa), using molecular and genetic approaches. We determined that OsHMGB1 expression is induced by Pi starvation and encodes a nucleus-localized protein. Phenotypic analysis of Oshmgb1 mutant and OsHMGB1 overexpression transgenic plants showed that OsHMGB1 positively regulates Pi homeostasis and plant growth. Transcriptome deep sequencing and chromatin immunoprecipitation followed by sequencing indicated that OsHMGB1 regulates the expression of a series of phosphate starvation-responsive (PSR) genes by binding to their promoters. Furthermore, an assay for transposase-accessible chromatin followed by sequencing revealed that OsHMGB1 is involved in maintaining chromatin accessibility. Indeed, OsHMGB1 occupancy positively correlated with genome-wide chromatin accessibility and gene expression levels. Our results demonstrate that OsHMGB1 is a transcriptional facilitator that regulates the expression of a set of PSR genes to maintain Pi homeostasis in rice by increasing the chromatin accessibility, revealing a key epigenetic mechanism that fine-tune plant acclimation responses to Pi-limited environments.


Assuntos
Oryza , Oryza/metabolismo , Cromatina/metabolismo , Proteínas de Plantas/metabolismo , Epigênese Genética , Homeostase , Fosfatos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo
18.
Plant Cell Environ ; 46(11): 3353-3370, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37575035

RESUMO

In response to increasing global warming, extreme heat stress significantly alters photosynthetic production. While numerous studies have investigated the temperature effects on photosynthesis, factors like vapour pressure deficit (VPD), leaf nitrogen, and feedback of sink limitation during and after extreme heat stress remain underexplored. This study assessed photosynthesis calculations in seven rice growth models using observed maximum photosynthetic rate (Pmax ) during and after short-term extreme heat stress in multi-year environment-controlled experiments. Biochemical models (FvCB-type) outperformed light response curve-based models (LRC-type) when incorporating observed leaf nitrogen, photosynthetically active radiation, temperatures, and intercellular CO2 concentration (Ci ) as inputs. Prediction uncertainty during heat stress treatment primarily resulted from variation in temperatures and Ci . Improving FVPD (the slope for the linear effect of VPD on Ci /Ca ) to be temperature-dependent, rather than constant as in original models, significantly improved Ci prediction accuracy under heat stress. Leaf nitrogen response functions led to model variation in leaf photosynthesis predictions after heat stress, which was mitigated by calibrated nitrogen response functions based on active photosynthetic nitrogen. Additionally, accounting for observed differences in carbohydrate accumulation between panicles and stems during grain filling improved the feedback of sink limitation, reducing Ci overestimation under heat stress treatments.


Assuntos
Aquecimento Global , Resposta ao Choque Térmico , Nitrogênio , Oryza , Fotossíntese , Folhas de Planta , Dióxido de Carbono/fisiologia , Grão Comestível , Resposta ao Choque Térmico/fisiologia , Temperatura Alta/efeitos adversos , Modelos Biológicos , Nitrogênio/fisiologia , Oryza/fisiologia , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Temperatura
19.
Opt Express ; 31(26): 43535-43549, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38178447

RESUMO

Magnetorheological polishing (MRF) has emerged as a critical non-contact sub-aperture polishing technology due to its notable attributes of high precision and minimal damage. However, MRF's inherent D-shaped removal function leads to reduced convergence efficiency of surface form error and introduces mid-spatial-frequency (MSF) waviness. To address these challenges, we propose magnetorheological precession finishing (MRPF) technology, which ingeniously combines MRF with bonnet precession polishing to generate a Gaussian-like removal function. A pivotal component of what we believe to be a novel approach is the design and fabrication of a specialized hemispherical magnetorheological precession polishing head. The design process incorporates magnetostatic simulations and magnetic force analysis to determine the optimal generating conditions for magnetorheological ribbons. Spot polishing experiments confirm the suitability of a 30° precession angle. Experimental results demonstrate that 8-step polishing achieves a Gaussian-like removal function. Additionally, uniform polishing of fused quartz surfaces significantly reduces Ra from 0.7 µm to 2.14 nm. This research showcases the feasibility of MRPF as a new technical route to achieve Gaussian-like removal functions and nanometer-scaled surface roughness.

20.
Opt Express ; 31(25): 41178-41190, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087523

RESUMO

The digital subcarrier multiplexing (DSCM) transmission scheme is expected for future ultra-large baud rate transmission. However, the phase noise and transmitter (Tx) IQ skew tolerance are decreased due to the narrow sub-band transmission and conjugated interference from symmetric subcarrier. In this paper, we propose a paired-subcarrier equalization scheme to jointly mitigate the phase noise and Tx IQ skew. We use a phase locking loop (PLL) embedded 4 × 4 MIMO equalizer to simultaneously realize polarization demultiplexing, phase noise and Tx IQ skew compensation. The 4 × 4 MIMO can deal with the paired-subcarrier interference in the DSCM transmission. Besides, since the inner subcarrier suffers smaller interference from its symmetric subcarrier, we estimate the phase noise by inner subcarriers and share the phase noise information with other subcarriers to reduce the overall complexity. Through simulations of 100-GBaud 64-QAM DSCM coherent optical fiber transmission consisting of eight 12.5-Gbaud subcarriers and experiment of 10-GBaud four-subcarriers PM-16QAM transmission, we find that the PLL embedded equalizer for DSCM scheme exhibits better skew and phase noise compensation ability compared with other equalizers. Additionally, we compare the performance of single-carrier and DSCM schemes with the proposed equalizers in simulation. The influence of phase noise and Tx IQ skew on DSCM transmission can be largely relaxed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA