Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 196: 110552, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32259759

RESUMO

Nowadays, numerous studies have focused on the newly developed technologies for the thorough removal of tetracyclines (TCs). However, it is often ignored that the parent TCs have limited stability in aquatic environments. Thus, this study selected green alga Chlamydomonas reinhardtii with high chlorophyll content to rapidly degrade chlortetracycline (CTC) into products with low toxicity. As the results shown, the half-life times of CTC (1 × 10-6 mol/L) decreased from 10.35 h to 2.55 h by the presence of C. reinhardtii at 24±1 °C with 12/12 h dark/light cycle. The main transformation products were iso-chlortetracycline (ICTC), 4-epi-iso-chlortetracycline (EICTC), and other degradation products with lower molecular weight. The toxicity evaluation shows that the negative effects of CTC on growth rate and soluble protein content of green algae were significantly alleviated after the enhanced degradation treatment, while the generation of reactive oxygen species (ROS) and antioxidant response in algal cells returned to normal levels. The chlorophyll of algae played an important role of photosensitizer, which catalyzed the photo-induced electron/energy transfer of CTC degradation. The ROS generation of algae also was also inseparable from the enhanced degradation of CTC, especially when the chlorophyll was damaged at the high CTC concentration. Based on these results, we can better select suitable algal species to further strengthen the degradation of antibiotics and effectively reduce the environmental risk of CTC in aqueous system.


Assuntos
Antibacterianos/análise , Chlamydomonas reinhardtii/metabolismo , Clortetraciclina/análise , Poluentes Químicos da Água/análise , Antibacterianos/metabolismo , Antibacterianos/toxicidade , Antioxidantes/metabolismo , Biodegradação Ambiental , Chlamydomonas reinhardtii/efeitos dos fármacos , Clorofila/metabolismo , Clorófitas/metabolismo , Clortetraciclina/metabolismo , Clortetraciclina/toxicidade , Inativação Metabólica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
2.
Environ Sci Technol ; 53(3): 1527-1535, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30620181

RESUMO

Herein, we rationally designed a dual-functional electroactive filter system for simultaneous detoxification and sequestration of Sb(III). Binder-free and nanoscale TiO2-modified carbon nanotube (CNT) filters were fabricated. Upon application of an external electrical field, in situ transformation of Sb(III) to less toxic Sb(V) can be achieved, which is further sequestered by TiO2. Sb(III) removal kinetics and capacity increase with applied voltage and flow rate. This can be explained by the synergistic effects of the filter's flow-through design, electrochemical reactivity, small pore size, and increased number of exposed sorption sites. STEM characterization confirms that Sb were mainly sequestered by TiO2. XPS, AFS, and XAFS results verify that the Sb(III) conversion process was accelerated by the electrical field. The proposed electroactive filter technology works effectively across a wide pH range. The presence of sulfate, chloride, and carbonate ions negligibly inhibited Sb(III) removal. Exhausted TiO2-CNT filters can be effectively regenerated using NaOH solution. At 2 V, 100 µg/L Sb(III)-spiked tap water generated ∼1600 bed volumes of effluent with >90% efficiency. Density functional theory calculations suggest that the adsorption energy of Sb(III) onto TiO2 increases (from -3.81 eV to -4.18 eV) and Sb(III) becomes more positively charged upon application of an electrical field.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Purificação da Água , Adsorção , Cinética
3.
Ecotoxicol Environ Saf ; 184: 109613, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31491606

RESUMO

Four sugar sources were used as co-substrates to promote the degradation of a selected refractory dye reactive black 5 (RB5) by the natural bacterial flora DDMZ1. The boosting performance of the four sugar sources on RB5 decolorization ranked as: fructose > sucrose > glucose > glucose + fructose. Kinetic results of these four co-metabolism systems agreed well with a first-order kinetic model. Four sugar sources stimulated the extracellular azoreductase secretion causing enhanced enzyme activity. An increased formation of low molecular weight intermediates was caused by the addition of sugar sources. The toxicity of RB5 degradation products was significantly reduced in the presence of sugar sources. The bacterial community structure differed remarkably as a result of sugar sources addition. For a fructose addition, a considerably enriched population of the functional species Burkholderia-Paraburkholderia and Klebsiella was noted. The results enlarge our knowledge of the microkinetic and microbiological mechanisms of co-metabolic degradation of refractory pollutants.


Assuntos
Corantes/metabolismo , Naftalenossulfonatos/metabolismo , Açúcares/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Biodegradação Ambiental , Corantes/química , Corantes/toxicidade , Cinética , NADH NADPH Oxirredutases/metabolismo , Naftalenossulfonatos/toxicidade , Nitrorredutases
4.
Electrophoresis ; 39(3): 486-495, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29193172

RESUMO

Sensitive and fast detection of ibuprofen enantiomers is very critical for required routine monitoring and risk assessment of trace pollutants in water samples. Here a simple, rapid and highly sensitive android smartphone application for chiral recognition was developed. Aptamer-capped gold nanoparticles (AuNPs) was demonstrated as an efficient detection platform for (S)-(+)-ibuprofen (S-Ibu) and (R)-(-)-ibuprofen (R-Ibu). Detachment of an enantioselective aptamer from the AuNPs surface and binding with an enantiomer of Ibu lead to AuNPs aggregation, which allows a rapid enantiodiscrimination of Ibu by monitoring the absorbance changes of AuNPs solution in the UV-vis spectrum. Under optimal conditions, the limit of detection for S-Ibu and R-Ibu was 1.24 and 3.91 pg/mL, respectively. These probes showed good chiral recognition ability in mixed samples (i.e. S-Ibu + R-Ibu) and environmental samples. These advantages can be further developed by quantitative measurement with smartphone, which opens new opportunities for on-site detection of trace chiral pollutants in a simple and practical manner.


Assuntos
Aptâmeros de Nucleotídeos/química , Colorimetria/instrumentação , Ouro/química , Ibuprofeno/análise , Nanopartículas Metálicas/química , Smartphone , Cor , Limite de Detecção , Tamanho da Partícula , Estereoisomerismo , Propriedades de Superfície , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 52(21): 12244-12254, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30351042

RESUMO

The waterlogging environment generally results in the deposition of iron plaque on plant roots, which may impact the fate of metal-based nanoparticles. Here, we investigated the influence of iron plaque on the uptake, translocation, and transformation of copper oxide nanoparticles (CuO NPs) in rice plants. The results show that the presence of iron plaque dramatically reduced the Cu contents in roots and shoots by 89% and 78% of those without iron plaque under 100 mg/L CuO NP treatment. Meanwhile, the Cu accumulation in plants was negatively related to the amount of iron plaque. X-ray absorption near edge structure (XANES) analysis demonstrated lower percentage of CuO but higher proportion of Cu(I) in shoots exposed to CuO NPs with the formation of iron plaque. Furthermore, micro X-ray fluorescence (µ-XRF) combined with µ-XANES revealed that the iron plaque in the root epidermis and exodermis consisted of goethite and ferrihydrite, which hindered the uptake of CuO NPs by roots. However, a few CuO NPs were still absorbed by roots via root hairs or lateral roots, and further translocated to shoots. But eventually, more than 90% of total Cu(II) was reduced to Cu(I)-cysteine and Cu2O in leaf veins of rice plants with iron plaque.


Assuntos
Nanopartículas Metálicas , Oryza , Cobre , Ferro , Óxidos , Raízes de Plantas
6.
Ecotoxicol Environ Saf ; 164: 416-424, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30142608

RESUMO

In present study, two methods (Fenton oxidation and biological degradation) were used to degrade azo dye (Reactive Black 5, RB5) and anthraquinone dye (Remazol Brilliant Blue R, RBBR). The changes of antiestrogenic activities of these two dyes through two degradation methods were detected using the yeast two-hybrid assay method. Fluorescence spectroscopy together with gas chromatography-mass spectrometry (GC-MS) method was performed to analyze the metabolites of RB5 and RBBR after Fenton oxidation and biological degradation. Results indicated that by Fenton oxidation, the decolorization of RB5 and RBBR were 99.31% and 96.62%, respectively, which were much higher than that by biological degradation. Dissolved organic carbon (DOC) reduction rates of RB5 and RBBR after Fenton oxidation were also much higher than that after biological degradation. By Fenton oxidation, the antiestrogenic activities of RB5 and RBBR all decreased below detection limit after degradation, while by biological degradation all of them increased significantly after degradation. Fluorescence spectroscopy analysis and GC-MS analysis confirmed the degradation effects of RB5 and RBBR by these two degradation methods. In addition, fluorescence spectroscopy analysis revealed that the metabolites humic acid-like substances might contribute to the increasing of antiestrogenic activity of RB5 and RBBR after biological degradation.


Assuntos
Corantes/química , Antagonistas de Estrogênios/química , Oxirredução/efeitos dos fármacos , Antraquinonas/química , Compostos Azo/química , Biodegradação Ambiental , Gammaproteobacteria/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Substâncias Húmicas , Naftalenossulfonatos/química , Espectrometria de Fluorescência
7.
J Am Soc Nephrol ; 28(12): 3671-3678, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28760751

RESUMO

Our previous studies showed that multitarget therapy is superior in efficacy to intravenous cyclophosphamide as an induction treatment for lupus nephritis in Asian populations. We conducted an open label, multicenter study for 18 months as an extension of the prior induction therapy trial in 19 renal centers in China to assess the efficacy and safety of multitarget maintenance therapy in patients who had responded at 24 weeks during the induction phase. Patients who had undergone multitarget induction therapy continued to receive multitarget therapy (tacrolimus, 2-3 mg/d; mycophenolate mofetil, 0.50-0.75 g/d; prednisone, 10 mg/d), and patients who had received intravenous cyclophosphamide induction treatment received azathioprine (2 mg/kg per day) plus prednisone (10 mg/d). We assessed the renal relapse rate during maintenance therapy as the primary outcome. We recruited 116 patients in the multitarget group and 90 patients in the azathioprine group. The multitarget and azathioprine groups had similar cumulative renal relapse rates (5.47% versus 7.62%, respectively; adjusted hazard ratio, 0.82; 95% confidence interval, 0.25 to 2.67; P=0.74), and serum creatinine levels and eGFR remained stable in both groups. The azathioprine group had more adverse events (44.4% versus 16.4% for multitarget therapy; P<0.01), and the multitarget group had a lower withdrawal rate due to adverse events (1.7% versus 8.9% for azathioprine; P=0.02). In conclusion, multitarget therapy as a maintenance treatment for lupus nephritis resulted in a low renal relapse rate and fewer adverse events, suggesting that multitarget therapy is an effective and safe maintenance treatment for patients with lupus nephritis.


Assuntos
Imunossupressores/administração & dosagem , Nefrite Lúpica/tratamento farmacológico , Adolescente , Adulto , Idoso , Azatioprina/administração & dosagem , China , Ciclofosfamida/administração & dosagem , Quimioterapia Combinada , Feminino , Humanos , Rim/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Ácido Micofenólico/administração & dosagem , Prednisona/administração & dosagem , Recidiva , Tacrolimo/administração & dosagem , Resultado do Tratamento , Adulto Jovem
8.
J Environ Sci (China) ; 66: 301-309, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29628098

RESUMO

Chitosan-metal complexes have been widely studied in wastewater treatment, but there are still various factors in complex preparation which are collectively responsible for improving the adsorption capacity need to be further studied. Thus, this study investigates the factors affecting the adsorption ability of chitosan-metal complex adsorbents, including various kinds of metal centers, different metal salts and crosslinking degree. The results show that the chitosan-Fe(III) complex prepared by sulfate salts exhibited the best adsorption efficiency (100%) for various dyes in very short time duration (10min), and its maximum adsorption capacity achieved 349.22mg/g. The anion of the metal salt which was used in preparation played an important role to enhance the adsorption ability of chitosan-metal complex. SO42- ions not only had the effect of crosslinking through electrostatic interaction with amine group of chitosan polymer, but also could facilitate the chelation of metal ions with chitosan polymer during the synthesis process. Additionally, the pH sensitivity and the sensitivity of ionic environment for chitosan-metal complex were analyzed. We hope that these factors affecting the adsorption of the chitosan-metal complex can help not only in optimizing its use but also in designing new chitosan-metal based complexes.


Assuntos
Quitosana/química , Complexos de Coordenação/química , Compostos Férricos/química , Poluentes Químicos da Água/química , Adsorção , Cinética , Modelos Químicos , Eliminação de Resíduos Líquidos
9.
Biochim Biophys Acta ; 1843(11): 2448-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25017793

RESUMO

Numerous studies have shown that the NALP3 inflammasome plays an important role in various immune and inflammatory diseases. However, whether the NALP3 inflammasome is involved in the pathogenesis of diabetic nephropathy (DN) is unclear. In our study, we confirmed that high glucose (HG) concentrations induced NALP3 inflammasome activation both in vivo and in vitro. Blocking NALP3 inflammasome activation by NALP3/ASC shRNA and caspase-1 inhibition prevented IL-1ß production and eventually attenuated podocyte and glomerular injury under HG conditions. We also found that thioredoxin (TRX)-interacting protein (TXNIP), which is a pro-oxidative stress and pro-inflammatory factor, activated NALP3 inflammasome by interacting with NALP3 in HG-exposed podocytes. Knocking down TXNIP impeded NALP3 inflammasome activation and alleviated podocyte injury caused by HG. In summary, the NALP3 inflammasome mediates podocyte and glomerular injury in DN, moreover, TXNIP participates in the formation and activation of the NALP3 inflammasome in podocytes during DN, which represents a novel mechanism of podocyte and glomerular injury under diabetic conditions.

10.
Extremophiles ; 19(2): 429-36, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25575615

RESUMO

Acidithiobacillus ferrooxidans is a heavy metal-tolerant acidophilic chemolithotroph found in acidic mine effluent and is used commercially in the bioleaching of sulfide ores. In this work, we investigated the interplay between divalent cadmium (Cd(2+)) resistance and expression of genes involved in the sulfur assimilation pathway (SAP). We also investigated the response of the thiol-containing metal-chelating metabolites, cysteine and glutathione(GSH), to increasing Cd(2+) concentrations. During growth in the presence of 30 mM Cd(2+), the concentrations of mRNA for 5 genes in the SAP pathway increased more than fourfold: these encode ATP sulfurylase (ATPS), adenosine 5'-phosphosulfate (APS) reductase, sulfite reductase (SiR), serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL). Increased transcription was also reflected in increased enzyme activities: those of SAT and adenosylphosphosulfate reductase (APR) reached a peak of 26- and 15.8-fold, respectively, compared to the control culture in the presence of 15 mM Cd(2+). In contrast, the activity of OAS-TL, which is responsible for the biosynthesis of cysteine, was diminished. At the metabolite level, the intracellular cysteine and GSH contents nearly doubled. These results suggested that Cd(2+) induced transcription of SAP genes, while directly inhibiting the activities of some enzymes (e.g., OAS-TL). Overall, these results are consistent with a detoxification/resistance mechanism involving enhanced sulfur uptake and sequestration of Cd(2+) by cysteine and glutathione.


Assuntos
Acidithiobacillus/metabolismo , Cádmio/toxicidade , Genes Bacterianos , Metaboloma , Estresse Fisiológico , Enxofre/metabolismo , Acidithiobacillus/efeitos dos fármacos , Acidithiobacillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína/biossíntese , Regulação Bacteriana da Expressão Gênica , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sulfato Adenililtransferase/genética , Sulfato Adenililtransferase/metabolismo
11.
Chem Soc Rev ; 43(15): 5234-44, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24841176

RESUMO

Semiconductor-mediated photocatalysis has received tremendous attention as it holds great promise to address the worldwide energy and environmental issues. To overcome the serious drawbacks of fast charge recombination and the limited visible-light absorption of semiconductor photocatalysts, many strategies have been developed in the past few decades and the most widely used one is to develop photocatalytic heterojunctions. This review attempts to summarize the recent progress in the rational design and fabrication of heterojunction photocatalysts, such as the semiconductor-semiconductor heterojunction, the semiconductor-metal heterojunction, the semiconductor-carbon heterojunction and the multicomponent heterojunction. The photocatalytic properties of the four junction systems are also discussed in relation to the environmental and energy applications, such as degradation of pollutants, hydrogen generation and photocatalytic disinfection. This tutorial review ends with a summary and some perspectives on the challenges and new directions in this exciting and still emerging area of research.

12.
Cell Physiol Biochem ; 34(3): 916-28, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25200363

RESUMO

BACKGROUND/AIMS: To investigate the role of angiopoietin-2 (Ang-2) and IL-18 in the pathogenesis of diabetic nephropathy (DN) and the molecular mechanisms through which alprostadil protects renal function. METHODS: DN was induced by streptozotocin and intraperitoneal injection of alprostadil was given to diabetic mice. After 2, 4 and 8 weeks of alprostadil treatment, the mRNA and protein expression of kidney Ang-2 and IL-18 were detected by reverse transcription PCR, Western blot and immunohistochemistry analyses. Mouse glomerular endothelial cells (GEnCs) were cultured in high glucose and treated with alprostadil. After transfection with an Ang-2-pcDNA and Ang-2-siRNA, both Ang-2 and IL-18 expression were measured by Western blot analyses. RESULTS: Alprostadil treatment caused a significant decrease in the renal damage parameters. Both Ang-2 and IL-18 were significantly increased in DN mice and in GEnCs cultured in high glucose; however, their expression was greatly reduced by alprostadil treatment. Ang-2 could also increase IL-18 expression in cultured endothelial cells under high glucose, and this response was partially blocked by Ang-2 siRNA. CONCLUSIONS: Ang-2 and IL-18 may be associated with the development and progression of DN in mice. Alprostadil treatment can protect renal function by reducing proteinuria. These effects are mediated, at least in part, through down-regulation of Ang-2 and IL-18 expression.


Assuntos
Alprostadil/uso terapêutico , Angiopoietina-2/fisiologia , Nefropatias Diabéticas/tratamento farmacológico , Interleucina-18/fisiologia , Agentes Urológicos/uso terapêutico , Animais , Sequência de Bases , Glicemia/metabolismo , Células Cultivadas , Primers do DNA , Nefropatias Diabéticas/fisiopatologia , Glucose/administração & dosagem , Hemoglobinas Glicadas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Environ Sci Technol ; 48(7): 3978-85, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24580110

RESUMO

Oxidation of arsenite (As(III)) is a critical yet often weak link in many current technologies for remediating contaminated groundwater. We report a novel, efficient oxidation reaction for As(III) conversion to As(V) using commercial available peroxymonosulfate (PMS). As(III) is rapidly oxidized by PMS with a utilization efficiency larger than 90%. Increasing PMS concentrations and pH accelerate oxidation of As(III), independent to the availability of dissolved oxygen. The addition of PMS enables As(III) to oxidize completely to As(V) within 24 h, even in the presence of high concentrations of radical scavengers. On the basis of these observations and theoretical calculations, a two-electron transfer (i.e., oxygen atom transfer) reaction pathway is proposed. Direct oxidation of As(III) by PMS avoids the formation of nonselective reactive radicals, thus minimizing the adverse impact of coexisting organic matter and maximizing the utilization efficiency of PMS. Therefore, this simple approach is considered a cost-effective water treatment method for the oxidation of As(III) to As(V).


Assuntos
Arsenitos/química , Oxidantes/química , Peróxidos/química , Elétrons , Sequestradores de Radicais Livres/química , Concentração de Íons de Hidrogênio , Íons , Ferro/química , Azul de Metileno/química , Oxirredução , Soluções , Termodinâmica
14.
Environ Sci Technol ; 47(19): 11174-81, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24015851

RESUMO

An efficient and green advanced oxidation process (i.e., photo-sulfite reaction) for the simultaneous oxidation of sulfite and organic pollutants in water is reported. The photo-sulfite system (UV-Fe(III)-sulfite) is based on the Fe-catalyzed sulfite oxidation and photochemistry of Fe(III) species. SO4(•-) and (•)OH radicals were identified in the photo-sulfite system with radical scavenging experiments using specific alcohols. This novel technology was consistently proven to be more favorable than the alternative Fe(III)-sulfite systems for the degradation of 2,4,6-trichlorophenol (2,4,6-TCP) and other organic pollutants at all conditions tested. The reactivity of photo-sulfite system was sustained due to the spontaneous switch of photoactive species from Fe(III)-sulfito to Fe(III)-hydroxo complexes with the depletion of sulfite and the decrease in pH. In contrast, in the absence of light the performance of the Fe(III)-sulfite system was greatly diminished after the consumption of sulfite. The formation of the Fe(III)-sulfito complex is a necessary step for initiating the photo-sulfite reaction. Inhibition of the oxidation of 2,4,6-TCP and methyl orange (MO) was observed in the presence of ligands that can stabilize one or more of the reactants: Fe(III), Fe(II), or sulfite. Our study provides a new facile route for the generation of SO4(•-) and simultaneous removal of organic and inorganic pollutants.


Assuntos
Clorofenóis/química , Corantes/química , Ferro/química , Sulfitos/química , Poluentes Químicos da Água/química , Compostos Azo/química , Benzenossulfonatos/química , Azul de Metileno/química , Rodaminas/química , Raios Ultravioleta
15.
Environ Sci Technol ; 47(12): 6486-92, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23692180

RESUMO

Arsenic and chromium are often abundant constituents of acid mine drainage (AMD) and are most harmful as arsenite (As(III)) and hexavalent (Cr(VI)). To simultaneously change their oxidation state from As(III) to As(V), and Cr(VI) to Cr(III), is a potentially effective and attractive strategy for environmental remediation. The coabundance of As(III) and Cr(VI) in natural environments indicates their negligible direct interaction. The addition of H2O2 enables and greatly accelerates the simultaneous oxidation of As(III) and reduction of Cr(VI). These reactions are further enhanced at acidic pH and higher concentrations of Cr(VI). However, the presence of ligands (i.e., oxalate, citrate, pyrophosphate) greatly retards the oxidation of As(III), even though it enhances the reduction of Cr(VI). To explain these results we propose a reaction mechanism where Cr(VI) is primarily reduced to Cr(III) by H2O2, via the intermediate tetraperoxochromate Cr(V). Cr(V) is then involved in the formation of (•)OH radicals. In the presence of ligands, the capacity of Cr(V) to form (•)OH radicals, which are primarily responsible for As(III) oxidation, is practically inhibited. Our findings demonstrate the feasibility for the coconversion of As(III) and Cr(VI) in AMD and real-world constraints to this strategy for environmental remediation.


Assuntos
Arsênio/química , Cromo/química , Recuperação e Remediação Ambiental , Radical Hidroxila/química , Oxirredução
16.
Biochemistry (Mosc) ; 78(3): 244-51, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23586717

RESUMO

IscA is a key member of the iron-sulfur cluster assembly machinery found in bacteria and eukaryotes, but the mechanism of its function in the biogenesis of iron-sulfur cluster remains elusive. In this paper, we demonstrate that Acidithiobacillus ferrooxidans IscA is a [4Fe-4S] cluster binding protein, and it can bind iron in the presence of DTT with an apparent iron association constant of 4·10(20) M(-1). The iron binding in IscA can be promoted by oxygen through oxidizing ferrous iron to ferric iron. Furthermore, we show that the iron bound form of IscA can be converted to iron-sulfur cluster bound form in the presence of IscS and L-cysteine in vitro. Substitution of the invariant cysteine residues Cys35, Cys99, or Cys101 in IscA abolishes the iron binding activity of the protein; the IscA mutants that fail to bind iron are unable to assemble the iron-sulfur clusters. Further studies indicate that the iron-loaded IscA could act as an iron donor for the assembly of iron-sulfur clusters in the scaffold protein IscU in vitro. Taken together, these findings suggest that A. ferrooxidans IscA is not only an iron-sulfur protein, but also an iron binding protein that can act as an iron donor for biogenesis of iron-sulfur clusters.


Assuntos
Acidithiobacillus/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Ferro-Enxofre/genética , Acidithiobacillus/química , Acidithiobacillus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Espectroscopia de Ressonância de Spin Eletrônica , Ferro/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Enxofre/metabolismo
17.
World J Microbiol Biotechnol ; 29(2): 275-80, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23054700

RESUMO

The bioleachings of chalcopyrite ore were compared after inoculating different cultures enriched from the original acid mine drainage sample. The results showed that the higher bioleaching performance was achieved for inoculation with the enrichment D (0.5 % S, 2 % iron and 1 % chalcopyrite) compared to other enrichment systems. The generated ferric precipitation during bioleaching had a key influence on the final copper extraction. After enrichment, higher ratio of iron-oxidizer and higher ratio of sulfur-oxidizer existed in enrichment B and C, respectively. These caused the different bioleaching behaviours from other systems. Maintaining a suitable equilibrium between iron- and sulfur-oxidizers is significant to decrease ferric precipitation or postpone its formation, finally prolong efficient bioleaching period and improve copper extraction.


Assuntos
Bactérias/metabolismo , Cobre/metabolismo , Sedimentos Geológicos/microbiologia , Microbiologia Industrial/métodos , Bactérias/genética , Bactérias/isolamento & purificação , Técnicas de Cultura Celular por Lotes , China , Cobre/análise , Sedimentos Geológicos/química , Mineração , Oxirredução
18.
Environ Monit Assess ; 185(4): 3233-41, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22814921

RESUMO

Conventionally, resin fractionation (RF) method has been widely used to characterize dissolved organic matter (DOM) found in different source waters based on general and broad DOM fractions grouping. In this study, a new refined method using multistep, microvolume resin fractionation combined with excitation emission matrix fluorescence spectroscopy (MSM-RF-EEMS) was developed for further isolation and characterization of subfractions within the primary DOM fractions separated from using the conventional RF method. Subsequently, its feasibility in indicating the occurrence of urban pollution in source waters was also assessed. Results from using the new MSM-RF-EEMS method strongly illustrated that several organic subfractions still exist within the regarded primary pure hydrophobic acid (HoA) fraction including the humic- and fulvic-like organic matters, tryptophan- and tyrosine-like proteins. It was found that by using the MSM-RF-EEMS method, the organic subfractions present within the primary DOM fraction could be easily identified and characterized. Further validation on the HoA fraction using the MSM-RF-EEMS method revealed that the constant association of EEM peak T1 (tryptophan) fraction could specifically be used to indicate the occurrence of urban pollution in source water. The correlation analysis on the presence of EEM peak T2 (tyrosine) fraction could be used as a supplementary proof to further verify the presence of urban pollution in source waters. These findings on using the presence of EEM peaks T1 and T2 within the primary HoA fraction would be significant and useful for developing a sensory device for online water quality monitoring.


Assuntos
Monitoramento Ambiental/métodos , Substâncias Húmicas/análise , Espectrometria de Fluorescência/métodos , Poluentes Químicos da Água/análise , Fracionamento Químico , Interações Hidrofóbicas e Hidrofílicas , Resinas Sintéticas/química , Poluição Química da Água/estatística & dados numéricos
19.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37768134

RESUMO

Feedback circuits, which act as functional units in superconducting quantum interference device (SQUID) readout circuits, such as positive feedback circuits for suppressing the preamplifier noise contribution or negative feedback circuits for increasing the linear flux range of SQUID, enable SQUIDs to achieve high performance in practical applications. Integrating feedback circuits with different functions into a single SQUID chip contributes to the construction of highly compact SQUID electronics. Here, we propose a SQUID readout circuit with tunable feedback polarity (TFP). The switching of the feedback polarity is easily realized by applying a control current to the superconducting switches integrated into the SQUID chip. The enhancement of the flux-to-voltage transfer coefficient or the linear flux range depends on the choice of feedback polarity. In addition, we introduce a two-stage scheme to address the degraded noise performance induced by negative feedback. This work attempts to develop a compact and versatile architecture of SQUID readout by using a set of compatible superconducting technologies.

20.
Curr Microbiol ; 65(2): 117-21, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22555344

RESUMO

The acidophilic Acidithiobacillus ferrooxidans can resist exceptionally high cadmium (Cd) concentrations. This property is important for its use in biomining processes, where Cd and other metal levels range usually between 15 and 100 mM. To learn about the mechanisms that allow A. ferrooxidans cells to survive in this environment, a bioinformatic search of its genome showed the presence of that a Cd(II)/Pb(II)-responsive transcriptional regulator (CmtR) was possibly related to Cd homeostasis. The expression of the CmtR was studied by real-time reverse transcriptase PCR using A. ferrooxidans cells adapted for growth in the presence of high concentrations of Cd. The putative A. ferrooxidans Cd resistance determinant was found to be upregulated when this bacterium was exposed to Cd in the range of 15-30 mM. The CmtR from A. ferrooxidans was cloned and expressed in Escherichia coli, the soluble protein was purified by one-step affinity chromatography to apparent homogeneity. UV-Vis spectroscopic measurements showed that the reconstruction CmtR was able to bind Cd(II) forming Cd(II)-CmtR complex in vitro. The sequence alignment and molecular modeling showed that the crucial residues for CmtR binding were likely to be Cys77, Cys112, and Cys121. The results reported here strongly suggest that the high resistance of the extremophilic A. ferrooxidans to Cd including the Cd(II)/Pb(II)-responsive transcriptional regulator.


Assuntos
Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Cádmio/metabolismo , Chumbo/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Cádmio/toxicidade , Cromatografia de Afinidade , Clonagem Molecular , Biologia Computacional , Farmacorresistência Bacteriana , Escherichia coli/genética , Perfilação da Expressão Gênica , Genes Bacterianos , Genoma Bacteriano , Chumbo/toxicidade , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA