Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39236339

RESUMO

To assess the ecological risk of microplastics (MPs) in agricultural systems, it is critical to simultaneously focus on MP-mediated single-organism response and different trophic-level organism interaction. Herein, we placed earthworms in soils contaminated with different concentrations (0.02% and 0.2% w/w) of polyethylene (PE) and polypropylene (PP) MPs to investigate the effect of earthworms on tomato against Helicoverpa armigera (H. armigera) under MPs stress. We found that earthworms alleviated the inhibitory effects of MPs stress on tomato growth and disrupted H. armigera growth. Compared to individual MPs exposure, earthworm incorporation significantly increased the silicon and lignin content in herbivore-damaged tomato leaves by 19.1% and 57.6%, respectively. Metabolites involved in chemical defense (chlorogenic acid) and phytohormones (jasmonic acid) were also activated by earthworm incorporation. Furthermore, earthworms effectively reduced oxidative damage induced by H. armigera via promoting antioxidant metabolism. Overall, our results suggest that utilizing earthworms to regulate above- and below-ground interactions could be a promising strategy for promoting green agriculture.

2.
Sci Total Environ ; : 175592, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39154997

RESUMO

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), a widely used antioxidant in rubber products, and its corresponding ozone photolysis product N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q), have raised public concerns due to their environmental toxicity. However, there is an existing knowledge gap on the toxicity of 6PPD and 6PPD-Q to aquatic plants. A model aquatic plant, Chlorella vulgaris (C. vulgaris), was subjected to 6PPD and 6PPD-Q at concentrations of 50, 100, 200, and 400 µg/L to investigate their effects on plant growth, photosynthetic, antioxidant system, and metabolic behavior. The results showed that 6PPD-Q enhanced the photosynthetic efficiency of C. vulgaris, promoting growth of C. vulgaris at low concentrations (50, 100, and 200 µg/L) while inhibiting growth at high concentration (400 µg/L). 6PPD-Q induced more oxidative stress than 6PPD, disrupting cell permeability and mitochondrial membrane potential stability. C. vulgaris responded to contaminant-induced oxidative stress by altering antioxidant enzyme activities and active substance levels. Metabolomics further identified fatty acids as the most significantly altered metabolites following exposure to both contaminants. In conclusion, this study compares the toxicity of 6PPD and 6PPD-Q to C. vulgaris, with 6PPD-Q demonstrating higher toxicity. This study provides valuable insight into the risk assessment of tire wear particles (TWPs) derived chemicals in aquatic habitats and plants.

3.
J Phys Chem Lett ; 15(13): 3486-3492, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38513132

RESUMO

Atomic-level modulation of the metal-oxide interface is considered an effective approach to optimize the electronic structure and catalytic activity of metal catalysts but remains highly challenging. Here, we employ the atomic layer deposition (ALD) technique together with a heteroatom doping strategy to effectively tailor the electronic metal-support interaction (EMSI) at the metal-oxide interface on the atomic level, thereby achieving high hydrogen evolution performance and Pt utilization. Theoretical calculations reveal that the doping of N atoms in Co3O4 significantly adjusts the EMSI between Pt-Co3O4 interfaces and, consequently, alters the d-band center of Pt and optimizes the adsorption/desorption of reaction intermediates. This work sheds light on the atomic-level regulation and mechanistic understanding of the EMSI in metal-oxide, while providing guidance for the development of advanced EMSI electrocatalysts for various future energy applications.

4.
J Hazard Mater ; 472: 134578, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38743971

RESUMO

Microplastics (MPs) are widespread in agricultural soil, potentially threatening soil environmental quality and plant growth. However, toxicological research on MPs has mainly been limited to individual components (such as plants, microbes, and animals), without considering their interactions. Here, we examined earthworm-mediated effects on tomato growth and the rhizosphere micro-environment under MPs contamination. Earthworms (Eisenia fetida) mitigated the growth-inhibiting effect of MPs on tomato plant. Particularly, when exposed to environmentally relevant concentrations (ERC, 0.02% w/w) of MPs, the addition of earthworms significantly (p < 0.05) increased shoot and root dry weight by 12-13% and 13-14%, respectively. MPs significantly reduced (p < 0.05) soil ammonium (NH4+-N) (0.55-0.69 mg/kg), nitrate nitrogen (NO3--N) (7.02-8.65 mg/kg) contents, and N cycle related enzyme activities (33.47-42.39 µg/h/g) by 37.7-50.9%, 22.6-37.2%, and 34.2-48.0%, respectively, while earthworms significantly enhanced (p < 0.05) inorganic N mineralization and bioavailability. Furthermore, earthworms increased bacterial network complexity, thereby enhancing the robustness of the bacterial system to resist soil MPs stress. Meanwhile, partial least squares modelling showed that earthworms significantly influenced (p < 0.01) soil nutrients, which in turn significantly affected (p < 0.01) plant growth. Therefore, the comprehensive consideration of soil ecological composition is important for assessing MPs ecological risk.


Assuntos
Microplásticos , Oligoquetos , Rizosfera , Poluentes do Solo , Solanum lycopersicum , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Oligoquetos/efeitos dos fármacos , Animais , Poluentes do Solo/toxicidade , Microplásticos/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Microbiologia do Solo
5.
J Hazard Mater ; 465: 133417, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38183945

RESUMO

The widespread presence of soil microplastics (MPs) has become a global environmental problem. MPs of different properties (i.e., types, sizes, and concentrations) are present in the environment, while studies about the impact of MPs having different properties are limited. Thus, this study investigated the effects of three common polymers (polystyrene, polyethylene, and polypropylene) with two concentrations (0.01% and 0.1% w/w) on growth and stress response of lettuce (Lactuca sativa L.), soil enzymes, and rhizosphere microbial community. Lettuce growth was inhibited under MPs treatments. Moreover, the antioxidant system, metabolism composition, and phyllosphere microbiome of lettuce leaves was also perturbed. MPs reduced phytase activity and significantly increased dehydrogenase activity. The diversity and structure of rhizosphere microbial community were disturbed by MPs and more sensitive to polystyrene microplastics (PSMPs) and polypropylene microplastics (PPMPs). In general, the results by partial least squares pathway models (PLS-PMs) showed that the presence of MPs influenced the soil-rhizosphere-plant system, which may have essential implications for assessing the environmental risk of MPs.


Assuntos
Microbiota , Microplásticos , Poliestirenos , Plásticos , Polietileno/toxicidade , Polipropilenos , Solo , Rizosfera
6.
Sci Total Environ ; 951: 175736, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39182783

RESUMO

N-(1,3-dimethylbutyl)-N '-phenyl-p-phenylenediamine (6PPD) and N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-Q) are ubiquitous in the environment and can cause toxicity to aquatic animals. However, research on the toxicological effects of 6PPD and 6PPD-Q on aquatic plants remains limited. The present study investigated the physiological, biochemical, and metabolic responses of the floating aquatic plant Eichhornia crassipes (E. crassipes) to environmentally relevant concentrations (0.1, 1, and 10 µg·L-1) of 6PPD and 6PPD-Q. We found that 6PPD and 6PPD-Q elicited minimal effects on plant growth, but 6PPD induced a concentration-dependent decrease in the content of photosynthetic pigments. Low doses (0.1 µg·L-1 and 1 µg·L-1) of 6PPD-Q significantly elevated Reactive Oxygen Species (ROS) content in E. crassipes roots, indicating oxidative damage. Furthermore, 6PPD-Q induced a more pronounced osmotic stress compared to 6PPD. Metabolic analyses revealed that carbohydrates were significantly altered under 6PPD and 6PPD-Q treatments. The findings of this study enhance the understanding of the environmental risks posed by 6PPD and 6PPD-Q to plants and reveal the potential mechanisms of phytotoxicity.

7.
Plant Physiol Biochem ; 198: 107699, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37054615

RESUMO

The toxicity of HHCB in the growth and development of plants is well known, but its uptake, subcellular distribution, and stereoselectivity, especially in a co-contamination environment, is not fully understood. Therefore, a pot experiment was performed to research the physiochemical response, and the fate of HHCB in pakchoi when the Cd co-existed in soil. The Chl contents were significantly lower, and the oxidative stress was aggravated under the co-exposure of HHCB and Cd. The accumulations of HHCB in roots were inhibited, and those in leaves were elevated. The transfer factors of HHCB in HHCB-Cd treatment increased. The subcellular distributions were analyzed in the cell walls, cell organelles, and cell soluble constituents of roots and leaves. In roots, the distribution proportion of HHCB followed cell organelle > cell wall > cell soluble constituent. In leaves, the distribution proportion of HHCB was different from that in roots. And the co-existing Cd made the distribution proportion of HHCB change. In the absence of Cd, the (4R,7S)-HHCB and (4R,7R)-HHCB were preferentially enriched in roots and leaves, and the stereoselectivity of chiral HHCB was more significant in roots than leaves. The co-existing Cd reduced the stereoselectivity of HHCB in plants. Our findings suggested that the fate of HHCB was affected by the co-existing Cd, so the risk of HHCB in the complicated environment should be paid more attention.


Assuntos
Poluentes do Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Cádmio/farmacologia , Solo/química , Plântula , Estresse Oxidativo , Raízes de Plantas , Folhas de Planta
8.
Chem Commun (Camb) ; 59(30): 4491-4494, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36974508

RESUMO

We propose a facile and scalable in situ polymerization strategy to selectively introduce the active quinone-based components across the carbon nanotube (CNT) surface. It can be observed that the optimized poly(anthraquinonyl sulfide) (PAQS)/CNT composites exhibit excellent activity and selectivity with a H2O2 yield ratio of approximately 91% at 0.5 V (vs. RHE), together with satisfactory stability at 0.5 V over 20 h. The electrocatalytic performance is correlated with the synergistic effect between PAQS and CNTs. That is, PAQS grafted with abundant quinone groups facilitates the 2 e- ORR process to produce H2O2, and the conductive CNT scaffold is beneficial for the uniform distribution of PAQS and ensures the fast electron transport through the composites.

9.
Transl Cancer Res ; 12(10): 2629-2645, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37969384

RESUMO

Background: Clear cell renal cell carcinoma (ccRCC) is the largest subtype of kidney tumour, with inflammatory responses characterising all stages of the tumour. Establishing the relationship between the genes related to inflammatory responses and ccRCC may help the diagnosis and treatment of patients with ccRCC. Methods: First, we obtained the data for this study from a public database. After differential analysis and Cox regression analysis, we obtained the genes for the establishment of a prognostic model for ccRCC. As we used data from multiple databases, we standardized all the data using the surrogate variable analysis (SVA) package to make the data from different sources comparable. Next, we used a least absolute shrinkage and selection operator (LASSO) regression to construct a prognostic model of genes related to inflammation. The data used for modelling and internal validation came from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) series (GSE29609) databases. ccRCC data from the International Cancer Genome Consortium (ICGC) database were used for external validation. Tumour data from the E-MTAB-1980 cohort were used for external validation. The GSE40453 and GSE53757 datasets were used to verify the differential expression of inflammation-related gene model signatures (IRGMS). The immunohistochemistry of IRGMS was queried through the Human Protein Atlas (HPA) database. After the adequate validation of the IRGM, we further explored its application by constructing nomograms, pathway enrichment analysis, immunocorrelation analysis, drug susceptibility analysis, and subtype identification. Results: The IRGM can robustly predict the prognosis of samples from patients with ccRCC from different databases. The verification results show that nomogram can accurately predict the survival rate of patients. Pathway enrichment analysis showed that patients in the high-risk (HR) group were associated with a variety of tumorigenesis biological processes. Immune-related analysis and drug susceptibility analysis suggested that patients with higher IRGM scores had more treatment options. Conclusions: The IRGMS can effectively predict the prognosis of ccRCC. Patients with higher IRGM scores may be better candidates for treatment with immune checkpoint inhibitors and have more chemotherapy options.

10.
Chem Commun (Camb) ; 59(4): 474-477, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36524562

RESUMO

The design and preparation of advanced nanocatalysts for the sensitive electrochemical detection of H2O2 is of great significance. Herein, a facile Pt@Co/MoN sensing platform was fabricated by depositing Pt nanoparticles onto Co/MoN nanoarrays using atomic layer deposition (ALD) technology. Benefitting from the unique nanostructure and the strong interaction between Pt and the nitride support, the prepared Pt@Co/MoN exhibited excellent performance in the electrochemical detection of H2O2. This work provides an interesting strategy to fabricate low-Pt electrocatalysts on a nanoarray support for future applications in electroanalysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA