Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 38(13): e23765, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38934372

RESUMO

The importance of autophagy in atherosclerosis has garnered significant attention regarding the potential applications of autophagy inducers. However, the impact of TAT-Beclin1, a peptide inducer of autophagy, on the development of atherosclerotic plaques remains unclear. Single-cell omics analysis indicates a notable reduction in GAPR1 levels within fibroblasts, stromal cells, and macrophages during atherosclerosis. Tat-beclin1 (T-B), an autophagy-inducing peptide derived from Beclin1, could selectively bind to GAPR1, relieving its inhibition on Beclin1 and thereby augmenting autophagosome formation. To investigate its impact on atherosclerosic plaque progression, we established the ApoE-/- mouse model of carotid atherosclerotic plaques. Surprisingly, intravenous administration of Tat-beclin1 dramatically accelerated the development of carotid artery plaques. Immunofluorescence analysis suggested that macrophage aggregation and autophagosome formation within atherosclerotic plaques were significantly increased upon T-B treatment. However, immunofluorescence and transmission electron microscopy (TEM) analysis revealed a reduction in autophagy flux through lysosomes. In vitro, the interaction between T-B and GAPR1 was confirmed in RAW264.7 cells, resulting in the increased accumulation of p62/SQSTM1 and LC3-II in the presence of ox-LDL. Additionally, T-B treatment elevated the protein levels of p62/SQSTM1, LC3-II, and cleaved caspase 1, along with the secretion of IL-1ß in response to ox-LDL exposure. In summary, our study underscores that T-B treatment amplifies abnormal autophagy and inflammation, consequently exacerbating atherosclerotic plaque development in ApoE-/- mice.


Assuntos
Apolipoproteínas E , Aterosclerose , Autofagia , Proteína Beclina-1 , Placa Aterosclerótica , Animais , Camundongos , Proteína Beclina-1/metabolismo , Proteína Beclina-1/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Aterosclerose/patologia , Autofagia/efeitos dos fármacos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Células RAW 264.7 , Camundongos Endogâmicos C57BL , Masculino , Camundongos Knockout , Macrófagos/metabolismo
2.
ACS Omega ; 8(13): 11813-11823, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37033859

RESUMO

Fly ash from coal-fired power plants can enter chemical absorbents along with flue gas. Silica and metal oxides are the main components of fly ash. To explore the effect of the metal oxides on absorbents, we analyzed the integrated CO2 absorption-desorption process using N-methyldiethanolamine (MDEA) as the standard and an amine absorbent after adding different metal oxides. The effects of each metal oxide on CO2 capture by the MDEA solution, including CO2 reaction heat, absorption rate, cyclic loading, and carbonation rate, were assessed. It was found that supplementation with appropriate calcium oxide and magnesium oxide proportions accelerates the CO2 absorption rate and shortens the saturation time of the MDEA solution by 9%-17%. Magnesium oxide and calcium oxide were precipitated as carbonates during absorption. The CO2 reaction heat of the MDEA solution increased by 95% after adding magnesium oxide, thereby significantly increasing the energy consumption of the desorption process. On the basis of the experimental studies, the increase in CO2 absorption rate by MDEA after adding MgO and CaO may be mediated through two different mechanisms.

3.
Sci Rep ; 11(1): 11003, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34040096

RESUMO

An exceptional phenomenon has been observed that SO2 and NOx in flue gas can be effectively adsorbed over activated carbon with a surprising capacity at cold temperatures with the presence of oxygen. In this study, the adsorption characteristics of NO and SO2 over activated carbon at 80, 20, 0, and - 20 is experimentally investigated. Without the presence of oxygen, adsorption of NO is negligible. In the presence of oxygen, NO can be oxidized to NO2 over activated carbon which leads to the co-adsorption of NO/NO2 within the adsorption bed. Catalytic oxidation of NO over activated carbon can be significantly enhanced at cold temperatures, leading to an extraordinary increase of adsorption capacity of NO. With an initial concentration of NO = 200 ppmv and a space velocity of 5000 h-1, the average specific capacity increases from 3.8 to 169.1 mg/g when the temperature decreases from 80 to - 20 â„ƒ. For NO-O2 co-adsorption, the specific capacity increases along the adsorption bed due to the increasing NO2 concentrations. The adsorption capacity of SO2 is also significantly enhanced at cold temperatures. With an initial concentration of SO2 = 1000 ppmv, the specific capacity increases from 12.9 to 123.1 mg/g when the temperature decreases from 80 to - 20 â„ƒ. A novel low-temperature adsorption (LAS) process is developed to simultaneously remove SO2 and NOx from flue gas with a target of near-zero emission. A pilot-scale testing platform with a flue gas flowrate of 3600 Nm3/h is developed and tested. Emission of both SO2 and NOx is less than 1 ppmv, and the predicted energy penalty is about 3% of the net generation.

4.
PLoS One ; 9(8): e106318, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25165856

RESUMO

OBJECTIVES: Ventricular septal defect (VSD), one of the most common types of congenital heart disease (CHD), results from a combination of environmental and genetic factors. Recent studies demonstrated that microRNAs (miRNAs) are involved in development of CHD. This study was to characterize the expression of miRNAs that might be involved in the development or reflect the consequences of VSD. METHODS: MiRNA microarray analysis and reverse transcription-polymerase chain reaction (RT-PCR) were employed to determine the miRNA expression profile from 3 patients with VSD and 3 VSD-free controls. 3 target gene databases were employed to predict the target genes of differentially expressed miRNAs. miRNAs that were generally consensus across the three databases were selected and then independently validated using real time PCR in plasma samples from 20 VSD patients and 15 VSD-free controls. Target genes of validated 8 miRNAs were predicted using bioinformatic methods. RESULTS: 36 differentially expressed miRNAs were found in the patients with VSD and the VSD-free controls. Compared with VSD-free controls, expression of 15 miRNAs were up-regulated and 21 miRNAs were downregulated in the VSD group. 15 miRNAs were selected based on database analysis results and expression levels of 8 miRNAs were validated. The results of the real time PCR were consistent with those of the microarray analysis. Gene ontology analysis indicated that the top target genes were mainly related to cardiac right ventricle morphogenesis. NOTCH1, HAND1, ZFPM2, and GATA3 were predicted as targets of hsa-let-7e-5p, hsa-miR-222-3p and hsa-miR-433. CONCLUSION: We report for the first time the circulating miRNA profile for patients with VSD and showed that 7 miRNAs were downregulated and 1 upregulated when matched to VSD-free controls. Analysis revealed target genes involved in cardiac development were probably regulated by these miRNAs.


Assuntos
Perfilação da Expressão Gênica/métodos , Comunicação Interventricular/sangue , Comunicação Interventricular/genética , MicroRNAs/sangue , Estudos de Casos e Controles , Pré-Escolar , Feminino , Regulação da Expressão Gênica , Humanos , Lactente , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA