Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 817
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(2): e2212250120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36598953

RESUMO

The interaction of water with TiO2 surfaces is of crucial importance in various scientific fields and applications, from photocatalysis for hydrogen production and the photooxidation of organic pollutants to self-cleaning surfaces and bio-medical devices. In particular, the equilibrium fraction of water dissociation at the TiO2-water interface has a critical role in the surface chemistry of TiO2, but is difficult to determine both experimentally and computationally. Among TiO2 surfaces, rutile TiO2(110) is of special interest as the most abundant surface of TiO2's stable rutile phase. While surface-science studies have provided detailed information on the interaction of rutile TiO2(110) with gas-phase water, much less is known about the TiO2(110)-water interface, which is more relevant to many applications. In this work, we characterize the structure of the aqueous TiO2(110) interface using nanosecond timescale molecular dynamics simulations with ab initio-based deep neural network potentials that accurately describe water/TiO2(110) interactions over a wide range of water coverages. Simulations on TiO2(110) slab models of increasing thickness provide insight into the dynamic equilibrium between molecular and dissociated adsorbed water at the interface and allow us to obtain a reliable estimate of the equilibrium fraction of water dissociation. We find a dissociation fraction of 22 ± 6% with an associated average hydroxyl lifetime of 7.6 ± 1.8 ns. These quantities are both much larger than corresponding estimates for the aqueous anatase TiO2(101) interface, consistent with the higher water photooxidation activity that is observed for rutile relative to anatase.


Assuntos
Simulação de Dinâmica Molecular , Água , Água/química , Titânio/química
2.
Proc Natl Acad Sci U S A ; 120(39): e2306841120, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37722061

RESUMO

Although direct generation of high-value complex molecules and feedstock by coupling of ubiquitous small molecules such as CO2 and N2 holds great appeal as a potential alternative to current fossil-fuel technologies, suitable scalable and efficient catalysts to this end are not currently available as yet to be designed and developed. To this end, here we prepare and characterize SbxBi1-xOy clusters for direct urea synthesis from CO2 and N2 via C-N coupling. The introduction of Sb in the amorphous BiOx clusters changes the adsorption geometry of CO2 on the catalyst from O-connected to C-connected, creating the possibility for the formation of complex products such as urea. The modulated Bi(II) sites can effectively inject electrons into N2, promoting C-N coupling by advantageous modification of the symmetry for the frontier orbitals of CO2 and N2 involved in the rate-determining catalytic step. Compared with BiOx, SbxBi1-xOy clusters result in a lower reaction potential of only -0.3 V vs. RHE, an increased production yield of 307.97 µg h-1 mg-1cat, and a higher Faraday efficiency (10.9%), pointing to the present system as one of the best catalysts for urea synthesis in aqueous systems among those reported so far. Beyond the urea synthesis, the present results introduce and demonstrate unique strategies to modulate the electronic states of main group p-metals toward their use as effective catalysts for multistep electroreduction reactions requiring C-N coupling.

3.
Chem Rev ; 123(13): 8859-8941, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37358266

RESUMO

Amorphous materials are metastable solids with only short-range order at the atomic scale, which results from local intermolecular chemical bonding. The lack of long-range order typical of crystals endows amorphous nanomaterials with unconventional and intriguing structural features, such as isotropic atomic environments, abundant surface dangling bonds, highly unsaturated coordination, etc. Because of these features and the ensuing modulation in electronic properties, amorphous nanomaterials display potential for practical applications in different areas. Motivated by these elements, here we provide an overview of the unique structural features, the general synthetic methods, and the potential for applications covered by contemporary research in amorphous nanomaterials. Furthermore, we discussed the possible theoretical mechanism for amorphous nanomaterials, examining how the unique structural properties and electronic configurations contribute to their exceptional performance. In particular, the structural benefits of amorphous nanomaterials as well as their enhanced electrocatalytic, optical, and mechanical properties, thereby clarifying the structure-function relationships, are highlighted. Finally, a perspective on the preparation and utilization of amorphous nanomaterials to establish mature systems with a superior hierarchy for various applications is introduced, and an outlook for future challenges and opportunities at the frontiers of this rapidly advancing field is proposed.

4.
J Am Chem Soc ; 146(19): 13527-13535, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38691638

RESUMO

Closing the carbon and nitrogen cycles by electrochemical methods using renewable energy to convert abundant or harmful feedstocks into high-value C- or N-containing chemicals has the potential to transform the global energy landscape. However, efficient conversion avenues have to date been mostly realized for the independent reduction of CO2 or NO3-. The synthesis of more complex C-N compounds still suffers from low conversion efficiency due to the inability to find effective catalysts. To this end, here we present amorphous bismuth-tin oxide nanosheets, which effectively reduce the energy barrier of the catalytic reaction, facilitating efficient and highly selective urea production. With enhanced CO2 adsorption and activation on the catalyst, a C-N coupling pathway based on *CO2 rather than traditional *CO is realized. The optimized orbital symmetry of the C- (*CO2) and N-containing (*NO2) intermediates promotes a significant increase in the Faraday efficiency of urea production to an outstanding value of 78.36% at -0.4 V vs RHE. In parallel, the nitrogen and carbon selectivity for urea formation is also enhanced to 90.41% and 95.39%, respectively. The present results and insights provide a valuable reference for the further development of new catalysts for efficient synthesis of high-value C-N compounds from CO2.

5.
J Am Chem Soc ; 146(28): 19295-19302, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38943666

RESUMO

Oxygen vacancies are generally considered to play a crucial role in the oxygen evolution reaction (OER). However, the generation of active sites created by oxygen vacancies is inevitably restricted by their condensation and elimination reactions. To overcome this limitation, here, we demonstrate a novel photoelectric reconstruction strategy to incorporate atomically dispersed Cu into ultrathin (about 2-3 molecular) amorphous oxyhydroxide (a-CuM, M = Co, Ni, Fe, or Zn), facilitating deprotonation of the reconstructed oxyhydroxide to generate high-valence Cu. The in situ XAFS results and first-principles calculations reveal that Cu atoms are stabilized at high valence during the OER process due to Jahn-Teller distortion, resulting in para-type double oxygen vacancies as dynamically stable catalytic sites. The optimal a-CuCo catalyst exhibits a record-high mass activity of 3404.7 A g-1 at an overpotential of 300 mV, superior to the benchmarking hydroxide and oxide catalysts. The developed photoelectric reconstruction strategy opens up a new pathway to construct in situ stable oxygen vacancies by high-valence Cu single sites, which extends the design rules for creating dynamically stable active sites.

6.
Small ; 20(3): e2305100, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688343

RESUMO

Diabetic chronic wounds pose significant clinical challenges due to their characteristic features of impaired extracellular matrix (ECM) function, diminished angiogenesis, chronic inflammation, and increased susceptibility to infection. To tackle these challenges and provide a comprehensive therapeutic approach for diabetic wounds, the first coaxial electrospun nanocomposite membrane is developed that incorporates multifunctional copper peroxide nanoparticles (n-CuO2 ). The membrane's nanofiber possesses a unique "core/sheath" structure consisting of n-CuO2 +PVP (Polyvinylpyrrolidone)/PCL (Polycaprolactone) composite sheath and a PCL core. When exposed to the wound's moist environment, PVP within the sheath gradually disintegrates, releasing the embedded n-CuO2 . Under a weakly acidic microenvironment (typically diabetic and infected wounds), n-CuO2 decomposes to release H2 O2 and Cu2+ ions and subsequently produce ·OH through chemodynamic reactions. This enables the anti-bacterial activity mediated by reactive oxygen species (ROS), suppressing the inflammation while enhancing angiogenesis. At the same time, the dissolution of PVP unveils unique nano-grooved surface patterns on the nanofibers, providing desirable cell-guiding function required for accelerated skin regeneration. Through meticulous material selection and design, this study pioneers the development of functional nanocomposites for multi-modal wound therapy, which holds great promise in guiding the path to healing for diabetic wounds.


Assuntos
Diabetes Mellitus , Nanocompostos , Nanofibras , Humanos , Cicatrização , Pele/lesões , Nanocompostos/química , Nanofibras/química , Inflamação
7.
Small ; 20(13): e2306767, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37990397

RESUMO

Structured liquids in miscible fluids, due to ineffective resistance to withstand particle self-diffusion, differ from that in immiscible liquids because of interfacial interactions. Here, a kind of structured liquid, jammed by thiol-terminated polystyrene-modified gold nanorods (GNRs) within tetrahydrofuran and toluene (TOL), is developed by introducing electrostatic repulsion to counterbalance the self-diffusion of GNRs. First-principle calculations reveal charge transfer between the GNRs and TOL, resulting in the electrostatic repulsion. The structured liquids can be regarded as mimic "loading vehicles" to controllably carry and transport matter under electric or magnetic fields, where release rate can be adjusted by changing the concentration of the soluble matter for slow release and using the photothermal effect of the assembled GNRs for fast release. This work has developed a new assembly mechanism to form structured liquids, allowing the construction of a flexible and robust droplet platform with possible applications in microreactors, biomimetic permeable membranes, and functional liquid robots.

8.
Small ; 20(27): e2310530, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38317526

RESUMO

Rechargeable aprotic Li-CO2 batteries have aroused worldwide interest owing to their environmentally friendly CO2 fixation ability and ultra-high specific energy density. However, its practical applications are impeded by the sluggish reaction kinetics and discharge product accumulation during cycling. Herein, a flexible composite electrode comprising CoSe2 nanoparticles embedded in 3D carbonized melamine foam (CoSe2/CMF) for Li-CO2 batteries is reported. The abundant CoSe2 clusters can not only facilitate CO2 reduction/evolution kinetics but also serve as Li2CO3 nucleation sites for homogeneous discharge product growth. The CoSe2/CMF-based Li-CO2 battery exhibits a large initial discharge capacity as high as 5.62 mAh cm-2 at 0.05 mA cm-2, a remarkably small voltage gap of 0.72 V, and an ultrahigh energy efficiency of 85.9% at 0.01 mA cm-2, surpassing most of the noble metal-based catalysts. Meanwhile, the battery demonstrates excellent cycling stability of 1620 h (162 cycles) at 0.02 mA cm-2 with an average overpotential of 0.98 V and energy efficiency of 85.4%. Theoretical investigations suggest that this outstanding performance is attributed to the suitable CO2/Li adsorption and low Li2CO3 decomposition energy. Moreover, flexible Li-CO2 pouch cell with CoSe2/CMF cathode displays stable power output under different bending deformations, showing promising potential in wearable electronic devices.

9.
Small ; 20(10): e2306508, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37919860

RESUMO

The design and fabrication of NO-evolving core-shell nanoparticles (denoted as NC@Fe), comprised of BNN6-laden COF@Fe3 O4 nanoparticles, are reported. This innovation extends to the modification of 3D printed polyetheretherketone scaffolds with NC@Fe, establishing a pioneering approach to multi-modal bone therapy tailored to address complications such as device-associated infections and osteomyelitis. This work stands out prominently from previous research, particularly those relying on the use of antibiotics, by introducing a bone implant capable of simultaneous NO gas therapy and photothermal therapy (PPT). Under NIR laser irradiation, the Fe3 O4 NP core (photothermal conversion agent) within NC@Fe absorbs photoenergy and initiates electron transfer to the loaded NO donor (BNN6), resulting in controlled NO release. The additional heat generated through photothermal conversion further propels the NC@Fe nanoparticles, amplifying the therapeutic reach. The combined effect of NO release and PPT enhances the efficacy in eradicating bacteria over a more extensive area around the implant, presenting a distinctive solution to conventional challenges. Thorough in vitro and in vivo investigations validate the robust potential of the scaffold in infection control, osteogenesis, and angiogenesis, emphasizing the timeliness of this unique solution in managing complicated bone related infectious diseases.


Assuntos
Estruturas Metalorgânicas , Polímeros , Benzofenonas , Polietilenoglicóis , Cetonas
10.
Nat Mater ; 22(11): 1317-1323, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37735525

RESUMO

Materials that possess the ability to self-heal cracks at room temperature, akin to living organisms, are highly sought after. However, achieving crack self-healing in inorganic materials, particularly with covalent bonds, presents a great challenge and often necessitates high temperatures and considerable atomic diffusion. Here we conducted a quantitative evaluation of the room-temperature self-healing behaviour of a fractured nanotwinned diamond composite, revealing that the self-healing properties of the composite stem from both the formation of nanoscale diamond osteoblasts comprising sp2- and sp3-hybridized carbon atoms at the fractured surfaces, and the atomic interaction transition from repulsion to attraction when the two fractured surfaces come into close proximity. The self-healing process resulted in a remarkable recovery of approximately 34% in tensile strength for the nanotwinned diamond composite. This discovery sheds light on the self-healing capability of nanostructured diamond, offering valuable insights for future research endeavours aimed at enhancing the toughness and durability of brittle ceramic materials.

11.
Cardiovasc Diabetol ; 23(1): 29, 2024 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218835

RESUMO

BACKGROUND: The stress hyperglycemia ratio (SHR) has been demonstrated as an independent risk factor for acute kidney injury (AKI) in certain populations. However, this relationship in patients with congestive heart failure (CHF) remains unclear. Our study sought to elucidate the relationship between SHR and AKI in patients with CHF. METHODS: A total of 8268 patients with CHF were included in this study. We categorized SHR into distinct groups and evaluated its association with mortality through logistic or Cox regression analyses. Additionally, we applied the restricted cubic spline (RCS) analysis to explore the relationship between SHR as a continuous variable and the occurrence of AKI. The primary outcome of interest in this investigation was the incidence of AKI during hospitalization. RESULTS: Within this patient cohort, a total of 5,221 (63.1%) patients experienced AKI during their hospital stay. Upon adjusting for potential confounding variables, we identified a U-shaped correlation between SHR and the occurrence of AKI, with an inflection point at 0.98. When the SHR exceeded 0.98, for each standard deviation (SD) increase, the risk of AKI was augmented by 1.32-fold (odds ratio [OR]: 1.32, 95% CI: 1.22 to 1.46). Conversely, when SHR was below 0.98, each SD decrease was associated with a pronounced increase in the risk of AKI. CONCLUSION: Our study reveals a U-shaped relationship between SHR and AKI in patients with CHF. Notably, we identified an inflection point at an SHR value of 0.98, signifying a critical threshold for evaluating AKI in this population.


Assuntos
Injúria Renal Aguda , Insuficiência Cardíaca , Hiperglicemia , Humanos , Estudos Retrospectivos , Fatores de Risco , Hiperglicemia/diagnóstico , Hiperglicemia/epidemiologia , Hiperglicemia/complicações , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/epidemiologia , Insuficiência Cardíaca/complicações
12.
Chemphyschem ; : e202400536, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38989542

RESUMO

The testing and evaluation of catalysts in CO2 electroreduction is a very tedious process. To study the catalytic system of CO2 reduction more quickly and efficiently, it is necessary to establish a method that can detect multiple catalysts at the same time. Herein, a series of CuBi bimetallic catalysts have been successfully prepared on a single glass carbon electrode by a scanning micropieptte contact method. The application of scanning electrochemical microscopy (SECM) enabled the visualization of the CO2 reduction activity in diverse catalyst micro-points. The SECM imaging with Substrate generation/tip collection (SG/TC) mode was conducted on CuBi bimetallic micro-points, revealing that HER reaction emerged as the prevailing reaction when a low overpotential was employed. While the applied potential was lower than -1.5 V (vs Ag/AgCl), the reduction of CO2 to formic acid became dominant. Increasing the bismuth proportion in the bimetallic catalyst can inhibit the hydrogen evolution reaction at low potential and enhances the selectivity of the CO product at high cathode overpotential.This research offers a novel approach to examining arrays of catalysts for CO2 reduction.

13.
Cell Commun Signal ; 22(1): 6, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166927

RESUMO

Ferroptosis is a newly discovered form of cell death that is featured in a wide range of diseases. Exosome therapy is a promising therapeutic option that has attracted much attention due to its low immunogenicity, low toxicity, and ability to penetrate biological barriers. In addition, emerging evidence indicates that exosomes possess the ability to modulate the progression of diverse diseases by regulating ferroptosis in damaged cells. Hence, the mechanism by which cell-derived and noncellular-derived exosomes target ferroptosis in different diseases through the system Xc-/GSH/GPX4 axis, NAD(P)H/FSP1/CoQ10 axis, iron metabolism pathway and lipid metabolism pathway associated with ferroptosis, as well as its applications in liver disease, neurological diseases, lung injury, heart injury, cancer and other diseases, are summarized here. Additionally, the role of exosome-regulated ferroptosis as an emerging repair mechanism for damaged tissues and cells is also discussed, and this is expected to be a promising treatment direction for various diseases in the future. Video Abstract.


Assuntos
Exossomos , Ferroptose , Lesão Pulmonar , Humanos , Morte Celular , NAD
14.
Langmuir ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988010

RESUMO

Currently, platinum (Pt)/carbon support composite materials have tremendous application prospects in the hydrogen evolution reaction (HER). However, one of the primary challenges for boosting their performance is designing a substrate with the desired microstructure. Herein, the intact hollow carbon spheres (HCSs) were prepared via template method. Based on the morphology variation of the as-prepared HCSs-x, we conjectured that the polydopamine (PDA) core was generated first and then slowly grew into a complete overburden (SiO2@PDA). Afterward, Pt atomic clusters were anchored on the outer shells of HCSs-4 to construct composite electrocatalysts (Pty/HCSs-4) by a chemical reduction method. Due to the low charge-transfer resistance, the HCSs have a large electrochemical surface area and provide a continuous electron transport pathway, boosting the atom utilization efficiency during hydrogen production and release. The synthesized Pt2.5/HCSs-4 electrocatalysts exhibit excellent HER activity in acidic media, which can be ascribed to the compositional modulation and delicate structural design. Specifically, when the overpotential is 10 A g-1, the overpotential can achieve 92 mV. This work opens a new route to fabricate Pt-based electrocatalysts and brings a new understanding of the formation mechanism of HCSs.

15.
Nanotechnology ; 35(12)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38055979

RESUMO

Tin oxide-based (SnO2) materials show high theoretical capacity for lithium and sodium storage benefiting from a double-reaction mechanism of conversion and alloying reactions. However, due to the limitation of the reaction thermodynamics and kinetics, the conversion reaction process of SnO2usually shows irreversibility, resulting in serious capacity decay and hindering the further application of the SnO2anode. Herein, SnO2/SnS heterojunction was anchored on the surface and inside of CMK-3 byinsitusynthesis method, forming a stable 3D structural material (SnO2/SnS@CMK-3). The electrochemical properties of SnO2/SnS@CMK-3 composite show high capacity and reversible conversion reaction, which was attributed to the synergistic effect of CMK-3 and SnO2/SnS heterojunction. To further investigate the influence of the heterojunction on the reversibility of the conversion reaction, the Gibbs free energy (ΔG) was calculated using density functional theory. The results show that SnO2/SnS heterojunction has a closer to zero ΔGfor lithium/sodium ion batteries compared to SnO2, indicating that the heterojunction enhances the reversibility of the conversion reaction in chemical reaction thermodynamics. Our work provides insights into the reversibility of the conversion reaction of SnO2-based materials, which is essential for improving their electrochemical performance.

16.
Appl Opt ; 63(3): 831-837, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294398

RESUMO

In this work, we propose a new, to the best of our knowledge, corner point detection method for a super-wide field of view infrared imaging system. First, the edge of the checkerboard calibration board is detected at the pixel level by morphological operation. Second, the interpolation technique is used to refine the edge so that the edge has sub-pixel accuracy. We obtain the four checkerboard unit corners near the real corner point and average the coordinates of the four corners to indirectly obtain the coordinates of the real corner point. Meanwhile, we take pictures of the same calibration board at different angles for repeatability verification. It is proved that the improvement of our algorithm for the detection of corners of super-wide field of view infrared images is more feasible compared to the traditional algorithms.

17.
Eur Spine J ; 33(2): 695-705, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37874394

RESUMO

PURPOSE: Although the Roussouly classification has been widely used in surgical planning for adult scoliosis patients, little is known about whether it can be used to guide sagittal correction for adolescent idiopathic scoliosis (AIS) patients. The purpose of this study was to explore whether the Roussouly classification could be used to help surgeons restore the ideal sagittal alignment for AIS patients to avoid the development of proximal junctional kyphosis (PJK). METHODS: In this retrospective cohort study, eighty-seven patients with Lenke 5 AIS who underwent surgery from January 2010 to August 2020 were enrolled and divided into two groups: the PJK group and the non-PJK group. All patients were classified into "current types" and "ideal types" according to two versions of the Roussouly classification, and the mismatch rate was evaluated in terms of the consistency between their current type and ideal type. Student's t test, Mann‒Whitney U test, Pearson's Chi-square test, and others were used to compare the two groups regarding patient demographic characteristics (age, sex, Risser sign, etc.) and radiographic parameters (sagittal vertical axis [SVA]; thoracic kyphosis [TK]; thoracolumbar junctional kyphosis [TLK]; lumbar lordosis [LL]; pelvic incidence [PI]; pelvic tilt [PT]; sacral slope [SS]; upper instrumented vertebra [UIV]; lower instrumented vertebra [LIV]; etc.). Multivariate logistic regression with backwards stepwise selection was performed to identify the risk factors for PJK. RESULTS: PJK was observed in 16 out of 87 patients (18.4%) until the final follow-up. The incidence of PJK was significantly higher in the patients not matching their ideal type than in those who did after surgery (60.9% vs. 3.1%, p = 0.000). The patients with ideal Type 1 had the highest incidence of PJK, while the lowest incidence was observed in patients with ideal Type 2 (50.0% vs. 5.1%, p = 0.000). The PJK group had greater TK, LL, and PI-LL than the non-PJK group before and after surgery. The postoperative PJA in the PJK group was also larger than that in the non-PJK group. Multivariate logistic regression revealed that postoperative Roussouly type mismatch was significantly associated with the occurrence of PJK (OR = 64.2, CI = 9.6-407.1, p = 0.000). CONCLUSIONS: The Roussouly classification could serve as a prognostic tool for PJK in Lenke 5 AIS patients. Corrective surgery should restore sagittal alignment with respect to the patient's ideal sagittal profile (according to the Roussouly classification based on the PI) to decrease the incidence of PJK in AIS patients.


Assuntos
Cifose , Anormalidades Musculoesqueléticas , Escoliose , Adulto , Animais , Humanos , Adolescente , Escoliose/diagnóstico por imagem , Escoliose/cirurgia , Estudos Retrospectivos , Cifose/diagnóstico por imagem , Cifose/cirurgia , Ácido Dioctil Sulfossuccínico , Sacro
18.
Eur Spine J ; 33(2): 732-738, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37889326

RESUMO

BACKGROUND: Proximal junctional kyphosis (PJK) is a common complication following corrective surgery for adolescent idiopathic scoliosis (AIS) with a Lenke 5 curve. Previous studies have suggested that PJK may be associated with osteopenia, which is prevalent in AIS patients. MRI-based vertebral bone quality (VBQ) scores have been proposed as a valuable tool to assess preoperative bone quality. However, accurately measuring VBQ scores in Lenke 5 AIS patients with a structural lumbar curve can be challenging. Recently, a simplified S1 VBQ score has been proposed as an alternative method when the traditional VBQ score is not applicable. This study aims to evaluate the predictive value of the simplified S1 VBQ score in predicting the occurrence of PJK after corrective surgery for Lenke 5 AIS. METHODS: We conducted a retrospective analysis of patient data to assess the predictive utility of the S1 VBQ score for PJK in Lenke 5 AIS patients. Demographic, radiographic, and surgical data were collected, and S1 VBQ scores were calculated based on preoperative T1-weighted MRI images. Univariate analysis, linear regression, and multivariate logistic regression were performed to identify potential risk factors for PJK and to assess the correlation between other variables and the S1 VBQ score. Receiver operating characteristic analysis and area under the curve values were used to evaluate the predictive efficiency of the S1 VBQ score for PJK. RESULTS: A total of 105 patients (aged 15.50 ± 2.36 years) were included in the analysis, of whom 24 (22.9%) developed PJK. S1 VBQ scores were significantly higher in the PJK group compared to the non-PJK group (2.83 ± 0.44 vs. 2.48 ± 0.30, P < 0.001), and there was a significant positive correlation between the S1 VBQ score and proximal junctional angle (PJA) (r = 0.46, P < 0.0001). Multivariate analysis revealed that the S1 VBQ scores and preoperative thoracic kyphosis (TK) were significant predictors of PJK. CONCLUSION: This study provided evidence that higher S1 VBQ scores were independently associated with PJK occurrence following corrective surgery for Lenke 5 AIS. Preoperative measurement of the S1 VBQ score on MRI may serve as a valuable tool in planning surgical correction for Lenke 5 AIS.


Assuntos
Cifose , Escoliose , Fusão Vertebral , Humanos , Adolescente , Escoliose/diagnóstico por imagem , Escoliose/cirurgia , Escoliose/complicações , Estudos Retrospectivos , Radiografia , Fusão Vertebral/efeitos adversos , Fusão Vertebral/métodos , Cifose/diagnóstico por imagem , Cifose/cirurgia , Cifose/etiologia , Ácido Dioctil Sulfossuccínico
19.
Eur Spine J ; 33(3): 1055-1060, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38341814

RESUMO

PURPOSE: It is the first study to evaluate the predictive value of the geriatric nutritional risk index (GNRI) on postoperative delirium (POD) after transforaminal lumber interbody fusion (TLIF) in elderly patients with degenerative lumbar diseases. METHODS: A retrospective study was conducted to assess the outcomes of TLIF surgery in elderly patients with lumbar degenerative disease between the years 2016 and 2022. Delirium was diagnosed by reviewing postoperative medical records during hospitalization, utilizing the Confusion Assessment Method. The geriatric nutritional risk index was calculated using the baseline serum albumin level and body weight. Multivariate logistic regression analysis was employed to identify the association between preoperative GNRI and postoperative delirium (POD). Additionally, a receiver operating characteristic curve was utilized to determine the optimal GNRI cutoff for predicting POD. RESULTS: POD was observed in 50 of the 324 patients. The GNRI was visibly reduced in the delirium group. The mean GNRI was 93.0 ± 9.1 in non-delirium group and 101.2 ± 8.2 in delirium group. On multivariate logistic regression, Risk of POD increases significantly with low GNRI and was an independent factor in predicting POD following TLIF (OR 0.714; 95% CI 0.540-0.944; p = 0.018). On receiver operating characteristic curve, the area under curve (AUC) for GNRI was 0.738 (95% CI 0.660-0.817). The cutoff value for GNRI according to the Youden index was 96.370 (sensitivity: 66.0%, specificity: 70.4%). CONCLUSION: Our study indicated that lower GNRI correlated significantly with POD after TLIF. Performing GNRI evaluation prior to TLIF may be an effective approach of predicting the risk for POD among elderly patients with degenerative lumbar diseases.


Assuntos
Delírio do Despertar , Fusão Vertebral , Humanos , Idoso , Estado Nutricional , Avaliação Nutricional , Estudos Retrospectivos , Vértebras Lombares/cirurgia , Fusão Vertebral/efeitos adversos , Fatores de Risco
20.
Int J Environ Health Res ; 34(2): 1053-1063, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36987736

RESUMO

Retinol-binding protein 4 (RBP4) was controversially associated with type 2 diabetes mellitus (T2DM). This meta-analysis aimed at evaluating the association between RBP4 level and T2DM risk. MEDLINE and EMBASE were searched to identify relevant studies up to 3 December 2022. Random effects model was used to pool multivariate-adjusted odds ratios (ORs) and 95% confidence intervals (CIs). Publication bias was estimated by Funnel plot and Egger's test, it was considered to be significant when P < 0.05. Eight studies including 8087 participants were finally included. Compared to those with the lowest level, subjects with the highest level of RBP4 have a higher risk of T2DM (OR = 1.47, 95% CI: 1.16-1.78, P < 0.001, I2 = 86.9%). No publication bias among the included studies was found (t = 0.94, P = 0.377). This meta-analysis indicated that high RBP4 level was associated with increasing risk of T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA