Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioeng Transl Med ; 9(2): e10618, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435812

RESUMO

Currently, there are no ex vivo systems that can model the motion of peripheral arteries and allow for the evaluation of pharmacokinetics (PK) of endovascular devices. The objective of this study was to develop a novel peripheral simulating bioreactor system to evaluate drug pharmacokinetics of stents. We utilized 3D-printed and off-the-shelf components to construct a peripheral-simulating bioreactor system capable of mimicking the motion of peripheral arteries. Servo motors were primarily used to shorten/elongate, twist, and bend explanted porcine carotid arteries. To evaluate the pharmacokinetics in the bioreactor, drug-eluting stents were deployed within explanted arteries and subjected to vascular motion along with pulsatile flow conditions. Following 30 min and 24 h, the arteries were removed, and paclitaxel levels were measured. Scanning electron microscopy was also performed to evaluate the stent surface. Arterial paclitaxel levels of the stent-treated arteries were found to be higher at 30 min than at 24 h following pulsatile and no vascular motion and even higher at 24 h following pulsatile flow and vascular motion. The residual drug on the stent significantly decreased from 30 min to 24 h. Scanning electron microscopy confirmed the loss of paclitaxel coating at 24 h and greater disturbance in stents under peripheral motion versus pulsatile only. This system represents the first ex vivo system to determine the PK of drug-eluting stents under physiological flow and vascular motion conditions. This work provides a novel system for a quick and inexpensive preclinical tool to study acute drug tissue concentration kinetics of drug-releasing interventional vascular devices designed for peripheral applications.

2.
Front Cardiovasc Med ; 10: 1184816, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781304

RESUMO

Introduction: Sirolimus is currently being explored as an alternative drug to paclitaxel for the treatment of peripheral artery disease (PAD). To date, sirolimus has only been used as drug coatings for stents and balloons and no studies have yet demonstrated the delivery of sirolimus in liquid form. The purpose of this pilot study was to investigate the feasibility of the delivery of liquid sirolimus into arterial segments in a benchtop peripheral artery bioreactor. Methods: The feasibility to deliver liquid therapy was first tested on four drug delivery devices using a fluorescently tagged liquid drug and an ex vivo porcine artery benchtop model. The four devices included the Bullfrog micro-infusion device, ClearWay RX catheter, Occlusion perfusion catheter (OPC), and the targeted adjustable pharmaceutical administration system (TAPAS). Penetration of the fluorescently tagged drug was measured via microscopic imaging and quantification of the depth of drug penetration into all device-treated tissue. Based on the penetration outcome, we then selected a single device to deliver liquid sirolimus into the ex vivo porcine artery model undergoing physiological flow and pressure conditions. The liquid sirolimus-treated arteries were collected from the ex vivo bioreactor at 1- and 24-hour post-delivery and arterial drug retention analyzed by liquid chromatography-tandem mass spectrometry. Results: Fluorescent microscopy demonstrated that drug delivery with the OPC had greater drug penetration into the medial wall as compared to other devices (OPC: 234 ± 161 µm; TAPAS: 127 ± 68 µm; ClearWay: 118 ± 77 µm; Bullfrog: 2.12 ± 3.78 µm; p = 0.098). The results of the ex vivo flow-circuit bench top model showed that the OPC device successfully delivered the liquid sirolimus at 1-hour (5.17 ± 4.48 ng/mg) and 24-hour (0.78 ± 0.55 ng/mg). Conclusions: These results demonstrate for the first time the ability to deliver liquid sirolimus directly to the medial layer of an artery via a liquid delivery catheter.

3.
Mol Ther Nucleic Acids ; 34: 102023, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37727270

RESUMO

The local delivery of antiproliferative agents to inhibit neointimal growth is not specific to vascular smooth muscle cells (VSMC) and delays reendothelialization and vascular healing. This investigation was intended to evaluate the effect of luminal delivery of a VSMC-specific aptamer on endothelial healing. The impact of an RNA aptamer (Apt 14) was first examined on the migration and proliferation of primary cultured porcine aortic endothelial cells (ECs) in response to in vitro scratch wound injury. We further evaluated the impact of Apt 14 on reendothelialization when delivered locally in a swine iliofemoral injury model. Although Apt 14 did not affect EC migration and proliferation, in vitro results confirmed that paclitaxel significantly inhibited EC migration and proliferation. En face scanning electron microscopy demonstrated confluent endothelium with elongated EC morphology in Apt 14-treated arteries 14 and 28 days post-treatment. In contrast, vessels treated with paclitaxel-coated balloons displayed a cobblestone morphology and significant platelet and fibrin attachment at cell junctions. These results provide the first evidence of the efficacy of a cell-targeted RNA aptamer to facilitate endothelial healing in a clinically relevant large animal model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA