Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4118, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750050

RESUMO

Multicomponent oxides are intriguing materials in heterogeneous catalysis, and the interface between various components often plays an essential role in oxidations. However, the underlying principles of how the hetero-interface affects the catalytic process remain largely unexplored. Here we report a unique structure design of MnCoOx catalysts by chemical reduction, specifically for ethane oxidation. Part of the Mn ions incorporates with Co oxides to form spinel MnxCo3-xO4, while the rests stay as MnO2 domains to create the MnO2-MnxCo3-xO4 interface. MnCoOx with Mn/Co ratio of 0.5 exhibits an excellent activity and stability up to 1000 h under humid conditions. The synergistic effects between MnO2 and MnxCo3-xO4 are elucidated, in which the C2H6 tends to be adsorbed on the interfacial Co sites and subsequently break the C-H bonds on the reactive lattice O of MnO2 layer. Findings from this study provide valuable insights for the rational design of efficient catalysts for alkane combustion.

2.
Micromachines (Basel) ; 14(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37512650

RESUMO

The Caenorhabditis elegans (C. elegans) is an ideal model organism for studying human diseases and genetics due to its transparency and suitability for optical imaging. However, manually sorting a large population of C. elegans for experiments is tedious and inefficient. The microfluidic-assisted C. elegans sorting chip is considered a promising platform to address this issue due to its automation and ease of operation. Nevertheless, automated C. elegans sorting with multiple parameters requires efficient identification technology due to the different research demands for worm phenotypes. To improve the efficiency and accuracy of multi-parameter sorting, we developed a deep learning model using You Only Look Once (YOLO)v7 to detect and recognize C. elegans automatically. We used a dataset of 3931 annotated worms in microfluidic chips from various studies. Our model showed higher precision in automated C. elegans identification than YOLOv5 and Faster R-CNN, achieving a mean average precision (mAP) at a 0.5 intersection over a union (mAP@0.5) threshold of 99.56%. Additionally, our model demonstrated good generalization ability, achieving an mAP@0.5 of 94.21% on an external validation set. Our model can efficiently and accurately identify and calculate multiple phenotypes of worms, including size, movement speed, and fluorescence. The multi-parameter identification model can improve sorting efficiency and potentially promote the development of automated and integrated microfluidic platforms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA