RESUMO
BACKGROUND AND AIMS: Treatment of non-alcoholic steatohepatitis (NASH) is challenging, because suppressing fibrotic progression has not been achieved consistently by drug candidates currently in clinical trials. The aim of this study was to investigate the molecular interplays underlying NASH-associated fibrosis in a mouse NASH model and human specimens. METHODS: Mice were divided into 4 groups: Controls; NASH (high fat/Calorie diet plus high fructose and glucose in drinking water, HFCD-HF/G) for 16 weeks; HFCD-HF/G plus docosahexaenoic acid (DHA) for 16 or 8 weeks. RESULTS: Along with NASH progression, fibrotic deposition was documented in HFCD-HF/G-fed mice. Liver succinate content was significantly increased along with decreased expression of succinate dehydrogenase-A (SDH-A) in these mice; whereas, GPR-91 receptor expression was much enhanced in histology compared to control mice, and co-localized histologically with hepatic stellate cells (HSCs). Succinate content was increased in fatty acid-overloaded primary hepatocytes with significant oxidant stress and lipotoxicity. Exposure to succinate led to up-regulation of GPR-91 receptor in primary and immortalized HSCs. In contrast, suppression of GPR-91 receptor expression abolished succinate stimulatory role in GPR-91 expression and extracellular matrix production in HSCs. All these changes were minimized or abrogated by DHA supplementation in vivo or in vitro. Moreover, GPR-91 receptor expression correlates with severity of fibrosis in human NASH biopsy specimens. CONCLUSION: Succinate accumulation in steatotoic hepatocytes may result in HSC activation through GPR-91 receptor signalling in NASH progression, and the cross-talk between hepatocytes and HSC through GPR-91 signalling is most likely to be the molecular basis of fibrogenesis in NASH.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Fibrose , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido SuccínicoRESUMO
There are varieties of murine models of nonalcoholic steatohepatitis (NASH) with different pathophysiologic characteristics. For preclinical assessment, a standardized model would allow comparisons of various pharmacotherapeutic candidates in efficacy, pharmacokinetics, pharmaco-metabolism, and adverse effects under a same system. The present study aims to characterize murine NASH models by comparing end-points of major abnormalities. NASH was induced by feeding high fructose/glucose in drinking water (HF/G), high-fat/calorie diet (HFCD), and in combination (HFCD-HF/G) in mice for 8 or 16 weeks. HF/G feeding caused a minimal fat accumulation and increase in free fatty acids (FFA). In contrast, HFCD-HF/G feeding resulted in a remarkable increase in body weight, subcutaneous and visceral adipose tissue, macrosteatosis with a nearly seven-fold increase in triglyceride and FFA content, accompanied with marked hepatocellular injury, inflammatory responses, fibrosis, and insulin resistance, and represented as typical NASH in histopathology, metabolic, and adipokine profiles in a progressive manner. Meanwhile, mice fed HFCD displayed significant steatosis, necroptosis, fibrosis, insulin resistance, metabolic, and adipokine profiles, and the extent is less than those fed HFCD-HF/G. Significant MCP-1, CCR-2, and NLRP-1/3 activation were found in mice fed HFCD and HFCD-HF/G for 16 weeks, whereas gene expression of CPT-1 and ACOX-1 was down-regulated in these two groups in comparison to the controls. Nuclear receptors, such as SREBP-1c, FXR, LXR-α, PPAR-α, and PPAR-γ, were strikingly elevated in the HFCD-HF/G group. In conclusion, feeding HFCD-HF/G resulted in a reliable NASH model in mice with remarkable necroptosis, steatosis, fibrosis, and insulin resistance as well as a disordered profile of lipid metabolism and adipokine, and HFCD caused significant NASH features in histopathology and metabolic profiles only at a late stage. Whereas HF/G feeding barely led to minimal fat accumulation, some changes at molecular levels and metabolic disturbance in mice.
Assuntos
Hepatopatia Gordurosa não Alcoólica/etiologia , Adipocinas/genética , Adiposidade , Animais , Citocinas/genética , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Água Potável , Ingestão de Energia , Frutose/administração & dosagem , Glucose/administração & dosagem , Inflamassomos/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Metaboloma , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , TranscriptomaRESUMO
Nonalcoholic steatohepatitis is considered as a precancerous condition. However, hepatic carcinogenesis from NASH is poorly understood. This study aims to investigate the activation of pluripotent genes (c-Myc, Oct-4, KLF-4, and Nanog) and morphogenic gene (Gli-1) in hepatic progenitor cells from patient specimens and in an animal model to determine the possibility of normal stem/progenitor cells becoming the origin of NASH-HCC. In this study, expression of pluripotent and morphogenic genes in human NASH-HCC tissues was significantly upregulated compared to adjacent non-tumor liver tissues. After feeding high-fat/calorie diet plus high fructose/glucose in drinking water (HFC diet plus HF/G) for up to 12 months, mice developed obesity, insulin resistance, and steatohepatitis with significant necroptotic inflammation and fibrotic progression, as well as occurrence of hyperplastic nodules with dysplasia; and this model represents pathohistologically as a transition from NASH to NASH-HCC in a pre-carcinomatous stage. High expression of pluripotent and morphogenic genes was immunohistochemically visualized in the dysplasia areas of mouse liver, where there were many OV-6-positive cells, indicating proliferation of HOCs in NASH with fibrotic progression. Moreover, oncogenic transcription factors (c-Myc, KLF-4, and Nanog) were co-localized in these hepatic progenitor cells. In conclusion, pluripotent and morphogenic genes may contribute to the reprogramming of hepatic progenitor cells in driving these cells to be the origin of NASH-HCC in a steatotic and inflamed microenvironment.
Assuntos
Carcinoma Hepatocelular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hepatócitos/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fatores de Transcrição/metabolismo , Animais , Carcinoma Hepatocelular/química , Carcinoma Hepatocelular/genética , Proteínas de Ligação a DNA/genética , Dieta Hiperlipídica , Intolerância à Glucose/metabolismo , Hepatócitos/química , Humanos , Resistência à Insulina , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like , Neoplasias Hepáticas Experimentais/química , Neoplasias Hepáticas Experimentais/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Homeobox Nanog , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/metabolismo , Fator 3 de Transcrição de Octâmero , Proteínas Proto-Oncogênicas c-myc , Fatores de Transcrição/genéticaRESUMO
This study investigated the neuroprotective effect of salvianolic acids (SA) against ischemia/reperfusion (I/R) injury, and explored whether the neuroprotection was dependent on mitochondrial connexin43 (mtCx43) via the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. In vitro, we measured astrocyte apoptosis, mitochondrial membrane potential, and also evaluated the morphology of astrocyte mitochondria with transmission electron microscopy. In vivo, we determined the cerebral infarction volume and measured superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. Additionally, mtCx43, p-mtCx43, AKT, and p-AKT levels were determined. In vitro, we found that I/R injury induced apoptosis, decreased cell mitochondrial membrane potential (MMP), and damaged mitochondrial morphology in astrocytes. In vivo, we found that I/R injury resulted in a large cerebral infarction, decreased SOD activity, and increased MDA expression. Additionally, I/R injury reduced both the p-mtCx43/mtCx43 and p-AKT/AKT ratios. We reported that both in vivo and in vitro, SA ameliorated the detrimental outcomes of the I/R. Interestingly, co-administering an inhibitor of the PI3K/AKT pathway blunted the effects of SA. SA represents a potential treatment option for cerebral infarction by up-regulating mtCx43 through the PI3K/AKT pathway.
Assuntos
Alcenos/farmacologia , Isquemia Encefálica/prevenção & controle , Infarto da Artéria Cerebral Média/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Polifenóis/farmacologia , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose/efeitos dos fármacos , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Western Blotting , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacosRESUMO
We observed mitochondrial connexin43 (mtCx43) expression under cerebral ischemia-reperfusion (I/R) injury, analyzed its regulation, and explored its protective mechanisms. Wistar rats were divided into groups based on injections received before middle cerebral artery occlusion (MCAO). Cerebral infarction volume was detected by 2,3,5-triphenyltetrazolim chloride staining, and cell apoptosis was observed by transferase dUTP nick end labeling. We used transmission electron microscopy to observe mitochondrial morphology and determined superoxide dismutase (SOD) activity and malondialdehyde (MDA) content. MtCx43, p-mtCx43, protein kinase C (PKC), and p-PKC expression were detected by Western blot. Compared with those in the IR group, cerebral infarction volumes in the carbenoxolone (CBX) and diazoxide (DZX) groups were obviously smaller, and the apoptosis indices were down-regulated. Mitochondrial morphology was damaged after I/R, especially in the IR and 5-hydroxydecanoic acid (5-HD) groups. Similarly, decreased SOD activity and increased MDA were observed after MCAO; CBX, DZX, and phorbol-12-myristate-13-acetate (PMA) reduced mitochondrial functional injury. Expression of mtCx43 and p-mtCx43 and the p-Cx43/Cx43 ratio were significantly lower in the IR group than in the sham group. These abnormalities were ameliorated by CBX, DZX, and PMA. MtCx43 may protect the neurovascular unit from acute cerebral IR injury via PKC activation induced by mitoKATP channel agonists.
Assuntos
Conexina 43/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Apoptose , Córtex Cerebral/metabolismo , Córtex Cerebral/ultraestrutura , Conexina 43/genética , Infarto da Artéria Cerebral Média/patologia , Masculino , Malondialdeído/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismoRESUMO
BACKGROUND: Primary cardiac osteosarcoma is extremely rare. There is no cohort study on such tumours to date. The aim of this study is to investigate the clinical characteristics and outcome patterns of such tumours. METHODS: A thorough literature review was performed, and all relevant clinical items were collected. A total of 53 cases of primary cardiac osteosarcoma were enrolled in this study, including 25 males and 28 females. RESULTS: The age at diagnosis ranged from 14 to 77 years with a mean age of 43.6 years. The clinical manifestations, imaging features, and laboratory tests of the primary cardiac osteosarcomas were similar to other types of primary cardiac tumours. Sex, tumour size and adjunctive chemo-radiotherapy were found to affect the overall survival pattern. CONCLUSIONS: The present study may provide an effective consultation for the diagnosis and treatment of this tumour.
Assuntos
Neoplasias Ósseas/epidemiologia , Neoplasias Cardíacas/epidemiologia , Osteossarcoma/epidemiologia , Adolescente , Adulto , Idoso , Neoplasias Ósseas/patologia , Feminino , Neoplasias Cardíacas/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Osteossarcoma/patologiaRESUMO
Autophagy is a self-digesting process that is primarily responsible for the removal and recycling of long-lived proteins and damaged organelles to maintain the homeostasis of the cell. Recent studies have indicated dual roles for autophagy in cancer: suppression of tumor progression and promotion of survival. In this study, we sought to investigate the prognostic value of two autophagy-related proteins, autophagy-related gene 5 (ATG5) and FAK family kinase-interacting protein of 200 kDa (FIP200), in patients with operable breast cancer. More specifically, the expression of ATG5 and FIP200 was evaluated by immunohistochemistry (IHC) in surgical specimens collected from 200 patients who were diagnosed with histologically proven invasive ductal breast cancer. A stepwise Cox multivariate analysis was then performed to construct a risk prediction model. In this retrospective cohort study, both ATG5 (HR = 0.465, 95% CI 0.247-0.872, P = 0.017) and FIP200 (HR = 0.521, 95% CI 0.278-0.979, P = 0.043) correlated with prolonged disease-free survival (DFS). In a receiver operating characteristic (ROC) analysis, the addition of ATG5 and FIP200 expression led to a significantly improved area under the time-dependent ROC curve (AUC) at 3 years (0.748 versus 0.680, P < 0.001) and 5 years (0.756 versus 0.699, P < 0.001). Collectively, our findings established the prognostic significance of ATG5 and FIP200 in patients with breast cancer.
Assuntos
Neoplasias da Mama/diagnóstico , Mama/patologia , Proteínas Associadas aos Microtúbulos/análise , Proteínas Tirosina Quinases/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Autofagia , Proteína 5 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Neoplasias da Mama/patologia , Estudos de Coortes , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Prognóstico , Estudos RetrospectivosRESUMO
An asymmetrical Fabry-Perot interferometric (AFPI) force sensor is fabricated based on a narrowband reflection of low-reflectivity fiber Bragg grating (LR-FBG) and a broadband Fresnel reflection of the cleaved fiber end. The AFPI sensor includes a section of microfiber made by tapering and it achieves a force sensitivity of 0.221 pm/µN with a tapered microfiber of 40 mm length and 6.1 µm waist diameter. Compared with similar AFPI structure in 125 µm-diameter single mode fiber, the force sensitivity of the microfiber AFPI structure is greatly enhanced due to its smaller diameter and can be optimized for different force scales by controlling the diameter. The fabrication process of the AFPI sensor is simple and cost-effective. The AFPI sensor has better multiplexing capacity than conventional extrinsic fiber-optic Fabry-Perot sensors, while it also release the requirement on the wavelength matching of the FBG-pair-based FPI.
Assuntos
Tecnologia de Fibra Óptica/instrumentação , Interferometria/instrumentação , Refratometria/instrumentação , Transdutores de Pressão , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização , Estresse MecânicoRESUMO
Betaine was an endogenous catabolite of choline, which could be isolated from vegetables and marine products. Betaine could promote the metabolism of homocysteine in healthy subjects and was used for hyperlipidemia, coronary atherosclerosis, and fatty liver in clinic. Recent findings shown that Betaine rescued neuronal damage due to homocysteine induced Alzheimer's disease (AD) like pathological cascade, including tau hyperphosphorylation and amyloid-ß (Aß) deposition. Aß was derived from amyloid precursor protein (APP) processing, and was a triggering factor for AD pathological onset. Here, we demonstrated that Betaine reduced Aß levels by altering APP processing in N2a cells stably expressing Swedish mutant of APP. Betaine increased α-secretase activity, but decreased ß-secretase activity. Our data indicate that Betaine might play a protective role in Aß production.
Assuntos
Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Betaína/farmacologia , Lipotrópicos/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Homocisteína/efeitos dos fármacos , Humanos , L-Lactato Desidrogenase/metabolismo , Camundongos , Mutação/genética , Neuroblastoma/patologia , TransfecçãoRESUMO
BACKGROUND/AIMS: Cholestatic liver diseases including primary biliary cholangitis (PBC) are associated with active hepatic fibrogenesis, which ultimately progresses to cirrhosis. Activated hepatic stellate cells (HSCs) are the main fibrogenic effectors in response to cholangiocyte damage. JCAD regulates cell proliferation and malignant transformation in nonalcoholic steatoheaptitis-associated hepatocellular carcinoma (NASH-HCC). However, its participation in cholestatic fibrosis has not been explored yet. METHODS: Serial sections of liver tissue of PBC patients were stained with immunofluorescence. Hepatic fibrosis was induced by bile duct ligation (BDL) in wild-type (WT), global JCAD knockout mice (JCAD-KO) and HSC-specific JCAD knockout mice (HSC-JCAD-KO), and evaluated by histopathology and biochemical tests. In situ-activated HSCs isolated from BDL mice were used to determine effects of JCAD on HSC activation. RESULTS: In consistence with staining of liver sections from PBC patients, immunofluorescent staining revealed that JCAD expression was identified in smooth muscle α-actin (α-SMA)-positive fibroblast-like cells and was significantly up-regulated in WT mice with BDL. JCAD deficiency remarkably ameliorated BDL-induced hepatic injury and fibrosis, as documented by liver hydroxyproline content, when compared to WT mice with BDL. Histopathologically, collagen deposition was dramatically reduced in both JCAD-KO and HSC-JCAD-KO mice compared to WT mice, as visualized by Trichrome staining and semi-quantitative scores. Moreover, JCAD deprivation significantly attenuated in situ HSC activation and reduced expression of fibrotic genes after BDL. CONCLUSION: JCAD deficiency effectively suppressed hepatic fibrosis induced by BDL in mice, and the underlying mechanisms are largely through suppressed Hippo-YAP signaling activity in HSCs.
Assuntos
Carcinoma Hepatocelular , Moléculas de Adesão Celular , Colestase , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Colestase/complicações , Colestase/metabolismo , Colestase/patologia , Células Estreladas do Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Knockout , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismoRESUMO
BACKGROUND AND AIMS: Liver regeneration retardation post partial hepatectomy (PH) is a common clinical problem after liver transplantation. Identification of key regulators in liver regeneration post PH may be beneficial for clinically improving the prognosis of patients after liver transplantation. This study aimed to clarify the function of junctional protein-associated with coronary artery disease (JCAD) in liver regeneration post PH and to reveal the underlying mechanisms. METHODS: JCAD knockout (JCAD-KO), liver-specific JCAD-KO (Jcadâ³Hep) mice and their control group were subjected to 70% PH. RNA sequencing was conducted to unravel the related signalling pathways. Primary hepatocytes from KO mice were treated with epidermal growth factor (EGF) to evaluate DNA replication. Fluorescent ubiquitination-based cell cycle indicator (FUCCI) live-imaging system was used to visualise the phases of cell cycle. RESULTS: Both global and liver-specific JCAD deficiency postponed liver regeneration after PH as indicated by reduced gene expression of cell cycle transition and DNA replication. Prolonged retention in G1 phase and failure to transition over the cell cycle checkpoint in JCAD-KO cell line was indicated by a FUCCI live-imaging system as well as pharmacologic blockage. JCAD replenishment by adenovirus reversed the impaired DNA synthesis in JCAD-KO primary hepatocyte in exposure to EGF, which was abrogated by a Yes-associated protein (YAP) inhibitor, verteporfin. Mechanistically, JCAD competed with large tumour suppressor 2 (LATS2) for WWC1 interaction, leading to LATS2 inhibition and thereafter YAP activation, and enhanced expression of cell cycle-associated genes. CONCLUSION: JCAD deficiency led to delayed regeneration after PH as a result of blockage in cell cycle progression through the Hippo-YAP signalling pathway. These findings uncovered novel functions of JCAD and suggested a potential strategy for improving graft growth and function post liver transplantation. KEY POINTS: JCAD deficiency leads to an impaired liver growth after PH due to cell division blockage. JCAD competes with LATS2 for WWC1 interaction, resulting in LATS2 inhibition, YAP activation and enhanced expression of cell cycle-associated genes. Delineation of JCADHippoYAP signalling pathway would facilitate to improve prognosis of acute liver failure and graft growth in living-donor liver transplantation.
Assuntos
Moléculas de Adesão Celular , Regeneração Hepática , Transplante de Fígado , Animais , Humanos , Camundongos , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fígado/metabolismo , Regeneração Hepática/genética , Doadores Vivos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Moléculas de Adesão Celular/metabolismoRESUMO
Hedgehog signaling is activated in response to liver injury, and modulates organogenesis. However, the role of non-canonical hedgehog activation via TGF-ß1/SMAD3 in hepatic carcinogenesis is poorly understood. TGF-ß1/SMAD3-mediated non-canonical activation was found in approximately half of GLI2-positive hepatocellular carcinoma (HCC), and two new GLI2 isoforms with transactivating activity were identified. Phospho-SMAD3 interacted with active GLI2 isoforms to transactivate downstream genes in modulation of stemness, epithelial-mesenchymal transition, chemo-resistance and metastasis in poorly-differentiated hepatoma cells. Non-canonical activation of hedgehog signaling was confirmed in a transgenic HBV-associated HCC mouse model. Inhibition of TGF-ß/SMAD3 signaling reduced lung metastasis in a mouse in situ hepatic xenograft model. In another cohort of 55 HCC patients, subjects with high GLI2 expression had a shorter disease-free survival than those with low expression. Moreover, co-positivity of GLI2 with SMAD3 was observed in 87.5% of relapsed HCC patients with high GLI2 expression, indicating an increased risk of post-resection recurrence of HCC. The findings underscore that suppressing the non-canonical hedgehog signaling pathway may confer a potential strategy in the treatment of HCC.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/patologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Transgênicos , Proteínas Nucleares/metabolismo , Transdução de Sinais , Proteína Smad3/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteína Gli2 com Dedos de Zinco/genética , Proteína Gli2 com Dedos de Zinco/metabolismoRESUMO
Whether the dynamic development of peripheral inflammation aggravates brain injury and leads to poor outcome in stroke patients receiving intravenous thrombolysis (IVT), remains unclear and warrants further study. In this study, total of 1034 patients with acute ischemic stroke who underwent IVT were enrolled. Serum leukocyte variation (whether increase from baseline to 24 h after IVT), National Institutes of Health Stroke Scale (NIHSS), infarct volume, early neurologic deterioration (END), the unfavorable outcome at 3-month (modified Rankin Scale [mRS] score ≥3) and mortality were recorded. Serum brain injury biomarkers, including Glial fibrillary acidic protein (GFAP), ubiquitin c-terminal hydrolase L1 (UCH-L1), S100ß, neuron-specific enolase (NSE), were measured to reflect the extent of brain injury. We found that patients with increased serum leukocytes had elevated brain injury biomarkers (GFAP, UCH-L1, and S100ß), larger infarct volume, higher 24 h NIHSS, higher proportion of END, unfavorable outcome and mortality. Furthermore, an increase in serum leukocytes was independently associated with infarct volume, 24 h NIHSS, END, and unfavorable outcome at 3 months, and serum UCH-L1, S100ß, and NSE levels. These results suggest that an increase in serum leukocytes indicates severe brain injury and may be used to predict the outcome of patients with ischemic stroke who undergo IVT.
RESUMO
The prognostic value of ring finger protein 215 (RNF215) in colorectal cancer (CRC) is unclear. Herein, the present study aimed to investigate the precise value of RNF215 based on CRC datasets from The Cancer Genome Atlas (TCGA) and clinical cases. CRC patient data was collected from TCGA and clinical samples from the Department of Pathology, Shanghai Fifth People's Hospital, Fudan University (Shanghai, China). Logistic regression analysis was used to investigate the correlations between RNF215 and clinicopathological characteristics. The predictive value of RNF215 for the clinical outcome of CRC was determined using Kaplan-Meier curves and Cox regression. Gene set enrichment analysis (GSEA), single-sample GSEA (ssGSEA), and angiogenesis analysis were also conducted to investigate the biological role of RNF215. Immunohistochemistry was conducted to validate the results. The results of the present study confirmed that RNF215 protein expression was significantly associated with age, lymphatic invasion, and overall survival (OS). Univariate analysis showed that upregulation of RNF215 in CRC was significantly associated with age and lymphatic invasion. Kaplan-Meier survival analysis revealed that high RNF215 expression predicted poorer OS and disease-specific survival. A total of nine experimentally detected RNF215-binding proteins were identified with the STRING tool and Cytoscape software. GSEA suggested that RNF215 was associated with several important pathways involved in tumor occurrence, including the Kyoto Encyclopedia of Genes and Genomes MAPK signaling pathway and the WikiPathway RAS signaling pathway. ssGSEA confirmed that RNF215 was significantly expressed in natural killer cells, CD8 T cells and T helper cells. Angiogenesis analysis revealed that numerous angiogenesis-related genes had the same expression trend as RNF215 in CRC. The immunostaining results indicated that RNF215 expression was significantly higher in CRC tissues than in corresponding normal tissues. In conclusion, increased RNF215 expression may be a potential molecular marker predictive of poor survival and a treatment target in CRC. In addition, RNF215 may participate in the formation of CRC through a variety of signaling pathways.
RESUMO
The relationships of KRAS, NRAS, BRAF and PIK3CA gene mutations with the clinicopathological features and prognosis of colorectal cancer (CRC) in patient are lacking. Furthermore, the role of ring finger protein 215 (RNF215) in CRC patients with KRAS, NRAS, BRAF and PIK3CA mutations remains unclear. In the present study, 182 surgical resection specimens from patients with primary CRC for retrospective analysis, were collected. KRAS/NRAS/BRAF/PIK3CA gene mutations were confirmed by an amplification-refractory mutation system. Immunohistochemistry (IHC) was conducted to confirm KRAS, NRAS, BRAF and PIK3CA protein expression. RNF215 expression in patients with CRC was evaluated using TIMER 2.0 database and IHC. The individual mutation rates of KRAS, NRAS, BRAF and PIK3CA were 40.7% (74/182), 4.4% (8/182), 4.4% (8/182) and 3.3% (6/182), respectively. The KRAS exon 2 mutation rate was the highest (61.5%, 64/104), and these mutations mainly occurred at codons 12 and 13. KRAS/NRAS/BRAF/PIK3CA wild-type CRC patients had significantly longer overall survival and disease-free survival than mutated KRAS/NRAS/BRAF/PIK3CA CRC patients (P<0.05). Overall, 45.4% (5/11) of patients with PIK3CA mutations had concomitant KRAS mutations. The KRAS/NRAS/BRAF/PIK3CA gene mutation rate in patients with lymph node metastasis (76.1%, 35/46) was significantly higher than that in patients without lymph node metastasis (50.8%, 69/136) (P=0.0027). There were no significant differences in IHC expression between patients with and without KRAS, NRAS, BRAF and PIK3CA mutations (P>0.05). The TIMER 2.0 analysis showed that RNF215 expression was significantly higher in the mutated BRAF group than in the wild-type BRAF group in CRC (P<0.05). In conclusion, KRAS is the most commonly mutated gene, and KRAS mutations may be a poor prognostic factor for patients with CRC. KRAS wild-type patient resistance may be related to PIK3CA gene mutations, although this needs further verification in larger cohorts. BRAF mutations may be associated with RNF215 expression in patients with CRC.
RESUMO
One of the earliest neuropathological changes in Alzheimer disease (AD) is the accumulation of astrocytes at sites of ß-amyloid (Aß) deposits, but the cause of this cellular response is unclear. As the activity of protein phosphatase 2A (PP2A) is significantly decreased in the AD brains, we studied the role of PP2A in astrocytes migration. We observed unexpectedly that PP2A activity associated with glial fibrillary acidic protein, an astrocyte marker, was significantly upregulated in tg2576 mice, demonstrated by an increased enzyme activity, a decreased demethylation at leucine-309 (DM-PP2Ac), and a decreased phosphorylation at tyrosine-307 of PP2A (pY307-PP2Ac). Further studies by using in vitro wound-healing model and transwell assay demonstrated that upregulation of PP2A pharmacologically and genetically could stimulate astrocytes migration. Activation of PP2A promotes actin organization and inhibits p38 mitogen-activated protein kinases (p38 MAPK), while simultaneous activation of p38 MAPK partially abolishes the PP2A-induced astrocytes migration. Our data suggest that activation of astrocytes PP2A in tg2567 mice may stimulate the migration of astrocytes to the amyloid plaques by p38 MAPK inhibition, implying that PP2A deficits observed in AD may cause Aß accumulation via hindering the astrocytes migration.
Assuntos
Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Movimento Celular/fisiologia , Proteína Fosfatase 2/metabolismo , Regulação para Cima/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Astrócitos/patologia , Células Cultivadas , Camundongos , Camundongos Transgênicos , Fosforilação , Proteína Fosfatase 2/genética , Ratos , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/genéticaRESUMO
CCAAT enhancer binding protein-α (C/EBP-α) is a transcript factor that regulates adipocyte differentiation and induces apoptosis in hepatic stellate cells (HSCs) in vivo and in vitro. However, the effect of C/EBP-α on hepatocytes in vivo remains unknown. This study investigated whether C/EBP-α exerts different apoptotic effects on hepatocytes and HSCs in vitro and in vivo. An adenovirus vector-expressing C/EBP-α gene was constructed, and a rat hepatic stellate cell lines (HSC-T6) and hepatocytes were transfected. A CCl(4)-induced liver fibrosis model in mice was also utilized. C/EBP-α induced apoptosis in hepatocytes and HSCs, but a significant difference between these cell types was observed in vitro. The mitochondrial pathway was involved in the apoptotic process and was predominant in HSC-T6 apoptosis. In the CCl(4)-induced mice liver fibrosis model, the administration of Ad-C/EBP-α decreased extracellular matrix deposition, including collagen and hydroxyproline content, and γ-GT levels, a marker of liver damage, were reduced significantly. Immunohistochemistry and TUNEL assay results showed an increase of apoptosis in HSCs, but hepatocytes were less affected. C/EBP-α induced differential apoptotic effects in hepatocytes and HSCs in vitro and in vivo. This differential effect could be a potential target for the treatment of hepatic fibrosis with little hepatic toxicity.
Assuntos
Apoptose , Proteína alfa Estimuladora de Ligação a CCAAT/fisiologia , Células Estreladas do Fígado/fisiologia , Hepatócitos/fisiologia , Cirrose Hepática/metabolismo , Actinas/metabolismo , Animais , Proteína alfa Estimuladora de Ligação a CCAAT/biossíntese , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Tetracloreto de Carbono , Caspases/genética , Caspases/metabolismo , Células Cultivadas , Colágeno/metabolismo , Fragmentação do DNA , Matriz Extracelular/metabolismo , Expressão Gênica , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Hidroxiprolina/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , gama-Glutamiltransferase/metabolismoRESUMO
The reason for and consequences of BCL2L10 down-regulation in gastric carcinoma are poorly understood. Our aim was to investigate the function of the protein BCL2L10 in gastric carcinoma. We investigated BCL2L10 expression using quantitative real-time PCR and immunoblotting. The methylation status of the BCL2L10 gene promoter was examined by bisulphite sequencing in fresh gastric normal and carcinoma tissues. We studied apoptosis and proliferation regulation in gastric cancer cell lines using flow cytometry, fluorescence staining, murine xenografting and immunoblotting. Pathway inhibitors were applied to confirm the major pathways involved in apoptosis or proliferation regulation. We observed significant correlations between lower BCL2L10 expression and CpG island hypermethylation of the BCL2L10 gene promoter in gastric carcinoma, apoptosis induced by over-expressed BCL2L10 through mitochondrial pathways, and proliferation accelerated by BCL2L10 siRNA via the PI3K-Akt signalling pathway in gastric cancer cell lines. The pro-apoptotic effect of BCL2L10 and growth promotion by BCL2L10 siRNA in gastric cancer cells suggest that it may be a tumour suppressor.
Assuntos
Apoptose/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Neoplasias Gástricas/patologia , Animais , Proliferação de Células , Ilhas de CpG/genética , Metilação de DNA , Feminino , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Nus , Mitocôndrias/fisiologia , Transplante de Neoplasias , Fosfatidilinositol 3-Quinases/fisiologia , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transdução de Sinais/fisiologia , Neoplasias Gástricas/metabolismo , Transplante Heterólogo , Células Tumorais CultivadasRESUMO
Background: As the most prevalent chemical modifications on eukaryotic mRNAs, N6-methyladenosine (m6A) methylation was reported to participate in the regulation of various metabolic diseases. This study aimed to investigate the roles of m6A methylation and methyltransferase-like16 (METTL16) in non-alcoholic fatty liver disease (NAFLD). Methods: In this study, we used a model of diet-induced NAFLD, maintaining six male C57BL/6J mice on high-fat diet (HFD) to generate hepatic steatosis. The high-throughput sequencing and RNA sequencing were performed to identify the m6A methylation patterns and differentially expressed mRNAs in HFD mice livers. Furthermore, we detected the expression levels of m6A modify enzymes by qRT-PCR in liver tissues, and further investigated the potential role of METTL16 in NAFLD through constructing overexpression and a knockdown model of METTL16 in HepG2 cells. Results: In total, we confirmed 15,999 m6A recurrent peaks in HFD mice and 12,322 in the control. Genes with differentially methylated m6A peaks were significantly associated with the dysregulated glucolipid metabolism and aggravated hepatic inflammatory response. In addition, we identified five genes (CIDEA, THRSP, OSBPL3, GDF15 and LGALS1) that played important roles in NAFLD progression after analyzing the differentially expressed genes containing differentially methylated m6A peaks. Intriguingly, we found that the expression levels of METTL16 were substantially increased in the NAFLD model in vivo and in vitro, and further confirmed that METTL16 upregulated the expression level of lipogenic genes CIDEA in HepG2 cells. Conclusions: These results indicate the critical roles of m6A methylation and METTL16 in HFD-induced mice and cell NAFLD models, which broaden people's perspectives on potential m6A-related treatments and biomarkers for NAFLD.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Metiltransferases/genética , Camundongos Endogâmicos C57BL , Metilação , RNA Mensageiro/genética , Proteínas Reguladoras de Apoptose/metabolismoRESUMO
microRNAs (miRNAs) and miRNA-mediated regulatory networks are promising candidates in the prevention and treatment of cancer, but the role of specific miRNAs involved in hepatocellular carcinoma (HCC) remains to be elusive. Herein, we found that miR-106b-5p is upregulated in both HCC patients' tumor tissues and HCC cell lines. The miR-106b-5p expression level was positively correlated with α-fetoprotein (AFP), hepatitis B surface antigen (HBsAg), and tumor size. Overexpression of miR-106b-5p promoted cell proliferation, migration, cell cycle G1/S transition, and tumor growth, while decreased miR-106b-5p expression had opposite effects. Mechanistic studies showed that B-cell translocation gene 3 (BTG3), a known antiproliferative protein, was a direct target of miR-106b-5p, whose expression level is inversely correlated with miR-106b-5p expression. Moreover, miR-106b-5p positively regulates cell proliferation in a BTG3-dependent manner, resulting in upregulation of Bcl-xL, cyclin E1, and CDK2, as well as downregulation of p27. More importantly, we also demonstrated that miR-106b-5p enhances the resistance to sorafenib treatment in a BTG3-dependent manner. The in vivo findings showed that mice treated with a miR-106b-5p sponge presented a smaller tumor burden than controls, while the mice injected cells treated with miR-106b-5p had more considerable tumor burden than controls. Altogether, these data suggest that miR-106b-5p promotes cell proliferation and cell cycle and increases HCC cells' resistance to sorafenib through the BTG3/Bcl-xL/p27 signaling pathway.