Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Pancreatology ; 22(3): 401-413, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35300916

RESUMO

BACKGROUND/OBJECTIVES: Ribonucleotide Reductase M2 subunit (RRM2) is elevated in pancreatic cancer and involved in DNA synthesis and cell proliferation. But its specific mechanism including genetic differences and upstream regulatory pathways remains unclear. METHODS: We analyzed RRM2 expression of 178 pancreatic cancer patients in Gene Expression Profiling Interactive Analysis (GEPIA) database. Besides, more pancreatic cancer specimens were collected and detected RRM2 expression by immunohistochemistry. RRM2 knockdown by shRNA was applied for functional and mechanism analysis in vitro. Xenograft tumor growth was significantly slower by RRM2 silencing in vivo. RESULTS: It showed that high RRM2 expression had a poorer overall survival and disease free survival. RRM2 expression was higher in tumor grade 2 and 3 than grade 1. Immunohistochemistry data validated that high RRM2 expression predicted worse survival. RRM2 knockdown significantly reduced cell proliferation, inhibited colony formation and suppressed cell cycle progress. Further mechanism assay showed silencing RRM2 lead to inactivation of PI3K/AKT/mTOR pathway and inhibition of mutant p53, which induce S phase arrest and/or apoptosis. In panc-1 cells, S-phase arrest mediated by mutant p53 inhibition, p21 increase and cell cycle related proteins change. While in miapaca-2 cells, induction of apoptosis and S-phase arrest mediated by CDK1 played a coordinated role. CONCLUSION: Taken together, high RRM2 expression was associated with worse prognosis. Importantly, RRM2 knockdown deactivated PI3K/AKT/mTOR pathway, resulting in cell cycle arrest and/or apoptosis. This study shed light on the molecular mechanism of RRM2 in pancreatic tumor progression and is expected to provide a new theoretical basis for pancreatic cancer treatment.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas c-akt , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica , Humanos , Neoplasias Pancreáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Ribonucleosídeo Difosfato Redutase , Serina-Treonina Quinases TOR , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas
2.
Mol Carcinog ; 59(8): 908-922, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32346924

RESUMO

Kinesin family member 11 (KIF11) is a plus end-directed kinesin indispensable for the formation of the bipolar spindle in metaphase, where it objects to the action of minus end-directed molecular motors. Here, we hypothesize that KIF11 might be a therapeutic target of breast cancer and regulated by miR-30a. Cell Counting Kit 8 assays were used to investigate cell proliferation. Invasion assays were used to survey the motility of cells. Kaplan-Meier and Cox proportional analyses were employed for this outcome study. The prognostic significance and performance of KIF11 were validated on 17 worldwide independent microarray datasets and two The Cancer Genome Atlas-Breast Invasive Carcinoma sets. microRNA was predicted targeting KIF11 through sequence alignment in microRNA.org and confirmed by coexpression analysis in human breast cancer samples. Dual-luciferase reporter assays were employed to validate the interaction between miR-30a and KIF11 further. Higher KIF11 mRNA levels and lower miR-30a were significantly associated with poor survival of breast cancer patients. Inhibition of KIF11 by small-hairpin RNA significantly reduced the proliferation and invasion capabilities of the breast cancer cells. Meanwhile, downregulation of KIF11 could enhance the cytotoxicity of adriamycin in breast cancer cell lines MCF-7 and MDA-MB-231. A population study also validated that chemotherapy and radiotherapy significantly improved survival in early-stage breast cancer patients with low KIF11 expression levels. Further bioinformatics analysis demonstrated that miR-30a could interact with KIF11 and validated by dual-luciferase reporter assays. Therefore, KIF11 is a potential therapeutic target of breast cancer. miR-30a could specifically interact with KIF11 and suppress its expression in breast cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Cinesinas/metabolismo , MicroRNAs/genética , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Cinesinas/antagonistas & inibidores , Cinesinas/genética , RNA Interferente Pequeno/genética , Células Tumorais Cultivadas
3.
Gut ; 68(6): 1024-1033, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29954840

RESUMO

OBJECTIVES: Patients with gallbladder carcinoma (GBC) lack effective treatment methods largely due to the inadequacy of both molecular characterisation and potential therapeutic targets. We previously uncovered a spectrum of genomic alterations and identified recurrent mutations in the ErbB pathway in GBC. Here, we aimed to study recurrent mutations of genes and pathways in a larger cohort of patients with GBC and investigate the potential mechanisms and clinical significance of these mutations. DESIGN: We performed whole-exome sequencing (WES) in 157 patients with GBC. Functional experiments were applied in GBC cell lines to explore the oncogenic roles of ERBB2/ERBB3 hotspot mutations, their correlation with PD-L1 expression and the underlying mechanisms. ERBB inhibitors and a PD-L1 blocker were used to evaluate the anticancer activities in co-culture systems in vitro and in vivo. RESULTS: WES identified ERBB2 and ERBB3 mutations at a frequency of 7%-8% in the expanded cohort, and patients with ERBB2/ERBB3 mutations exhibited poorer prognoses. A set of in vitro and in vivo experiments revealed increased proliferation/migration on ERBB2/ERBB3 mutation. Ectopic expression of ERBB2/ERBB3 mutants upregulated PD-L1 expression in GBC cells, effectively suppressed normal T-cell-mediated cytotoxicity in vitro through activation of the PI3K/Akt signalling pathway and contributed to the growth and progression of GBC in vivo. Treatment with an ERBB2/ERBB3 inhibitor or a PD-L1 monoclonal antibody reversed these immunosuppressive effects, and combined therapy revealed promising therapeutic activities. CONCLUSIONS: ERBB2/ERBB3 mutations may serve as useful biomarkers in identifying patients who are sensitive to ERBB2/ERBB3 inhibitors and PD-L1 monoclonal antibody treatment. TRIAL REGISTRATION NUMBER: NCT02442414;Pre-results.


Assuntos
Antígeno B7-H1/genética , Sequenciamento do Exoma , Neoplasias da Vesícula Biliar/genética , Neoplasias da Vesícula Biliar/imunologia , Receptor ErbB-2/genética , Anticorpos Monoclonais/farmacologia , Antígeno B7-H1/efeitos dos fármacos , Linhagem Celular Tumoral , Análise Mutacional de DNA , Feminino , Genômica , Humanos , Masculino , Terapia de Alvo Molecular , Medição de Risco , Sensibilidade e Especificidade , Transdução de Sinais/efeitos dos fármacos
4.
Carcinogenesis ; 38(5): 519-531, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379297

RESUMO

Human mitochondrial pyrroline-5-carboxylate reductase (PYCR) is a house-keeping enzyme that catalyzes the reduction of Δ1-pyrroline-5-carboxylate to proline. This enzymatic cycle plays pivotal roles in amino acid metabolism, intracellular redox potential and mitochondrial integrity. Here, we hypothesize that PYCR1 might be a novel prognostic biomarker and therapeutic target for breast cancer. In this study, breast cancer tissue samples were obtained from Zhejiang University (ZJU set). Immunohistochemistry analysis was performed to detect the protein level of PYCR1, and Kaplan-Meier and Cox proportional analyses were employed in this outcome study. The prognostic significance and performance of PYCR1 mRNA were validated on 13 worldwide independent microarray data sets, composed of 2500 assessable breast cancer cases. Our findings revealed that both PYCR1 mRNA and protein expression were significantly associated with tumor size, grade and invasive molecular subtypes of breast cancers. Independent and pooled analyses verified that higher PYCR1 mRNA levels were significantly associated with poor survival of breast cancer patients, regardless of estrogen receptor (ER) status. For in vitro studies, inhibition of PYCR1 by small-hairpin RNA significantly reduced the growth and invasion capabilities of the cells, while enhancing the cytotoxicity of doxorubicin in breast cancer cell lines MCF-7 (ER positive) and MDA-MB-231 (ER negative). Further population study also validated that chemotherapy significantly improved survival in early-stage breast cancer patients with low PYCR1 expression levels. Therefore, PYCR1 might serve as a prognostic biomaker for either ER-positive or ER-negative breast cancer subtypes and can also be a potential target for breast cancer therapy.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Mitocôndrias/genética , Pirrolina Carboxilato Redutases/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular/genética , Análise por Conglomerados , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Mitocôndrias/metabolismo , Gradação de Tumores , Invasividade Neoplásica , Fenótipo , Prognóstico , Pirrolina Carboxilato Redutases/metabolismo , Receptores de Estrogênio/metabolismo , delta-1-Pirrolina-5-Carboxilato Redutase
5.
Mol Cancer ; 16(1): 20, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28137278

RESUMO

BACKGROUND: Colorectal cancer remains one of the most common malignant tumors worldwide. Colorectal cancer initiating cells (CCICs) are a small subpopulation responsible for malignant behaviors of colorectal cancer. Aberrant activation of the Wnt pathways regulates the self-renewal of CCIC. However, the underlying mechanism(s) remain poorly understood. METHODS: Via retroviral library screening, we identified Nuclear Receptor-Interacting Protein 2 (NRIP2) as a novel interactor of the Wnt pathway from enriched colorectal cancer colosphere cells. The expression levels of NRIP2 and retinoic acid-related orphan receptor ß (RORß) were further examined by FISH, qRT-PCR, IHC and Western blot. NRIP2 overexpressed and knockdown colorectal cancer cells were produced to study the role of NRIP2 in Wnt pathway. We also verified the binding between NRIP2 and RORß and investigated the effect of RORß on CCICs both in vitro and in vivo. Genechip-scanning speculated downstream target HBP1. Western blot, ChIP and luciferase reporter were carried to investigate the interaction between NRIP2, RORß, and HBP1. RESULTS: NRIP2 was significantly up-regulated in CCICs from both cell lines and primary colorectal cancer tissues. Reinforced expression of NRIP2 increased Wnt activity, while silencing of NRIP2 attenuated Wnt activity. The transcription factor RORß was a key target through which NRIP2 regulated Wnt pathway activity. RORß was a transcriptional enhancer of inhibitor HBP1 of the Wnt pathway. NRIP2 prevented RORß to bind with downstream HBP1 promoter regions and reduced the transcription of HBP1. This, in turn, attenuated the HBP1-dependent inhibition of TCF4-mediated transcription. CONCLUSIONS: NRIP2 is a novel interactor of the Wnt pathway in colorectal cancer initiating cells. interactions between NRIP2, RORß, and HBP1 mediate a new mechanism for CCIC self-renewal via the Wnt activity.


Assuntos
Neoplasias Colorretais/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Células-Tronco Neoplásicas/metabolismo , Proteínas do Tecido Nervoso/genética , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Proteínas Repressoras/genética , Regulação para Cima , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HT29 , Proteínas de Grupo de Alta Mobilidade/metabolismo , Humanos , Camundongos , Transplante de Neoplasias , Proteínas do Tecido Nervoso/metabolismo , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/metabolismo , Via de Sinalização Wnt
6.
Mol Pharmacol ; 87(6): 996-1005, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25814515

RESUMO

COH29 [N-(4-(3,4-dihydroxyphenyl)-5-phenylthiazol-2-yl)-3,4-dihydroxybenzamide], a novel antimetabolite drug developed at City of Hope Cancer Center, has anticancer activity that stems primarily from the inhibition of human ribonucleotide reductase (RNR). This key enzyme in deoxyribonucleotide biosynthesis is the target of established clinical agents such as hydroxyurea and gemcitabine because of its critical role in DNA replication and repair. Herein we report that BRCA-1-defective human breast cancer cells are more sensitive than wild-type BRCA-1 counterparts to COH29 in vitro and in vivo. Microarray gene expression profiling showed that COH29 reduces the expression of DNA repair pathway genes, suggesting that COH29 interferes with these pathways. It is well established that BRCA1 plays a role in DNA damage repair, especially homologous recombination (HR) repair, to maintain genome integrity. In BRCA1-defective HCC1937 breast cancer cells, COH29 induced more double-strand breaks (DSBs) and DNA-damage response than in HCC1937 + BRCA1 cells. By EJ5- and DR-green fluorescent protein (GFP) reporter assay, we found that COH29 could inhibit nonhomologous end joining (NHEJ) efficiency and that no HR activity was detected in HCC1937 cells, suggesting that repression of the NHEJ repair pathway may be involved in COH29-induced DSBs in BRCA1-deficient HCC1937 cells. Furthermore, we observed an accumulation of nuclear Rad51 foci in COH29-treated HCC1937 + BRCA1 cells, suggesting that BRCA1 plays a crucial role in repairing and recovering drug-induced DNA damage by recruiting Rad51 to damage sites. In summary, we describe here additional biologic effects of the RNR inhibitor COH29 that potentially strengthen its use as an anticancer agent.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Benzamidas/farmacologia , Reparo do DNA/efeitos dos fármacos , Ribonucleotídeo Redutases/antagonistas & inibidores , Tiazóis/farmacologia , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Proteína BRCA1/genética , Benzamidas/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Feminino , Xenoenxertos , Humanos , Camundongos Endogâmicos NOD , Testes de Mutagenicidade , Transplante de Neoplasias , Tiazóis/uso terapêutico , Peixe-Zebra
7.
Carcinogenesis ; 36(2): 232-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25542894

RESUMO

Glypican-3 (GPC3) protein expression was determined by immunohistochemical analysis from 29 normal livers, 80 cirrhotic livers sample taken near hepatocellular carcinoma (HCC), and 87 cirrhotic livers without HCC. The levels for miR-657 and HCC-related gene mRNAs were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Also, a published microarray dataset was used for gene set enrichment analysis (GSEA) to investigate the relationship between GPC3- and HCC-related gene signatures. Kaplan-Meier analysis was used to evaluate the relationship between GPC3 and HCC recurrence. GPC3 protein expression was not detected in any of the 29 (0%) normal livers, but was detected in 32 of 87 (37%) cirrhotic livers without HCC, and 51 of 80 (64%) cirrhotic liver samples taken near HCC sites (P < 0.001). The GPC3-positive rate in cirrhotic livers of viral origin was 68% (27/40), which was significantly higher than for non-viral cirrhotic livers (11%, 5/47) (P < 0.001). Also, GPC3 expression positively correlated with mRNA expression of HCC-related genes in the qRT-PCR and GSEA evaluations. Furthermore, HCC recurrence in cirrhotic liver samples taken near HCC sites was significantly higher in the GPC3-positive group than the GPC3-negative group (Log-rank P = 0.02, HR = 3.26; 95% CI = 1.20-10.29). This study demonstrated that highly expression of GPC3 could enrich HCC-related genes' mRNA expression and positive associate with dysplasia in cirrhotic livers. Therefore, GPC3 may serve as a precancerous biomarker in cirrhotic livers.


Assuntos
Carcinogênese/genética , Carcinoma Hepatocelular/genética , Glipicanas/biossíntese , Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Idoso , Carcinoma Hepatocelular/patologia , Feminino , Glipicanas/genética , Humanos , Estimativa de Kaplan-Meier , Fígado/patologia , Cirrose Hepática/patologia , Cirrose Hepática/virologia , Neoplasias Hepáticas/patologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/genética , Prognóstico , RNA Mensageiro/genética
8.
Tumour Biol ; 36(6): 4833-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25638032

RESUMO

Ribonucleotide reductase large subunit M1 (RRM1) forms a holoenzyme with small subunits to provide deoxyribonucleotides for DNA synthesis and cell proliferation. Here, we reported a non-RR role of the catalytic subunit protein RRM1 and related pathway in inhibiting colorectal cancer (CRC) metastasis. Ectopic overexpression of the wild-type RRM1, and importantly, its Y738F mutant that lacks RR enzymatic activity, prevented the migration and invasion of CRC cells by promoting phosphatase and tensin homolog on chromosome 10 (PTEN) transactivation. Furthermore, overexpression of the wild-type and RR-inactive mutant RRM1 similarly reduced the phosphorylation of Akt and increased the E-cadherin expression in CRC cells, which were blocked by PTEN knockdown attenuation. Examination of clinical CRC specimens demonstrated that both RRM1 protein expression and RR activity were elevated in most cancer tissues compared to the paired normal tissues. However, while RR activity did not change significantly in different cancer stages, the RRM1 protein level was significantly increased at stages T1-3 but decreased at stage T4, in parallel with the PTEN expression level and negatively correlated with invasion and liver metastasis. Thus, we propose that RRM1 protein can inhibit CRC invasion and metastasis at the advanced stage by regulating PTEN transactivation and its downstream pathways in addition to forming an RR holoenzyme for supporting cancer proliferation. Understanding of the seemingly contrary dual roles of RRM1 protein may further help to explain the complex mechanisms by which this key enzyme and its components are involved in cancer development.


Assuntos
Neoplasias Colorretais/genética , Invasividade Neoplásica/genética , PTEN Fosfo-Hidrolase/genética , Proteínas Supressoras de Tumor/biossíntese , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metástase Neoplásica , Estadiamento de Neoplasias , PTEN Fosfo-Hidrolase/biossíntese , Ribonucleosídeo Difosfato Redutase , Transdução de Sinais/genética , Proteínas Supressoras de Tumor/genética
9.
Hepatology ; 57(5): 1919-30, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23175432

RESUMO

UNLABELLED: Growing evidence indicates that deregulation of microRNAs (miRNAs) contributes to tumorigenesis. Dysregulation of miR-657 has been observed in several types of cancers, but its biological function is still largely unknown. Our results showed that miR-657 expression can be induced by hepatitis viral proteins and is significantly increased in hepatocellular carcinoma (HCC) tissues. Moreover, introduction of miR-657 dramatically increases proliferation and colony formation of HCC cells in vitro and induces tumor development in immunodeficient mice. Further studies showed that miR-657 directly targets the transducin-like enhancer protein 1 (TLE1) 3' untranslated region (UTR) and activates nuclear factor kappa B (NF-κB) pathways that contribute to hepatocarcinogenesis. CONCLUSION: This study identified a mechanism whereby miRNA-657 contributed to HCC through novel cancer pathways and provides new insights into the potential molecular mechanisms of hepatic carcinogenesis.


Assuntos
Carcinoma Hepatocelular/patologia , Transformação Celular Neoplásica/metabolismo , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais/fisiologia , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Células Cultivadas , Proteínas Correpressoras , Modelos Animais de Doenças , Progressão da Doença , Humanos , Técnicas In Vitro , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , MicroRNAs/genética , Transfecção , Transplante Heterólogo
10.
BMC Cancer ; 14: 664, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25213022

RESUMO

BACKGROUND: Ribonucleotide reductase (RR) is an essential enzyme involved in DNA synthesis. We hypothesized that RR subunit M2 (RRM2) might be a novel prognostic and predictive biomarker for estrogen receptor (ER)-negative breast cancers. METHODS: Individual and pooled survival analyses were conducted on six independent large-scale breast cancer microarray data sets; and findings were validated on a human breast tissue set (ZJU set). RESULTS: Gene set enrichment analysis revealed that RRM2-high breast cancers were significantly enriched for expression of gene sets that increased in proliferation, invasiveness, undifferentiation, embryonic stem/progenitor-like phenotypes, and poor patient survival (p < 0.01). Independent and pooled analyses verified that increased RRM2 mRNA levels were associated with poor patient outcome in a dose-dependent manner. The prognostic power of RRM2 mRNA was comparable to multiple gene signatures, and it was superior to TNM stage. In ER-negative breast cancers, RRM2 showed more prognostic power than that in ER-positive breast cancers. Further analysis indicated that RRM2 was a more accurate prognostic biomarker for ER-negative breast cancers than the pathoclinical indicators and uPA. A new RR inhibitor, COH29, could significantly enhance the chemosensitivity to doxorubicin in ER-negative MDA-MB-231 cells, but not in ER-positive MCF-7 cells. CONCLUSION: RRM2 appears to be a promising prognostic biomarker and therapeutic target for ER-negative breast cancer patients.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Ribonucleosídeo Difosfato Redutase/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Feminino , Humanos , Células MCF-7 , Pessoa de Meia-Idade , Prognóstico , Receptores de Estrogênio/metabolismo , Ribonucleosídeo Difosfato Redutase/metabolismo , Análise de Sobrevida , Adulto Jovem
11.
BMC Cancer ; 14: 124, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24564888

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) has higher rates of recurrence and distant metastasis, and poorer outcome as compared to non-TNBC. Aberrant activation of WNT signaling has been detected in TNBC, which might be important for triggering oncogenic conversion of breast epithelial cell. Therefore, we directed our focus on identifying the WNT ligand and its underlying mechanism in TNBC cells. METHODS: We performed large-scale analysis of public microarray data to screen the WNT ligands and the clinical significance of the responsible ligand in TNBC. WNT5B was identified and its overexpression in TNBC was confirmed by immunohistochemistry staining, Western blot and ELISA. ShRNA was used to knockdown WNT5B expression (shWNT5B). Cellular functional alteration with shWNT5B treatment was determined by using wound healing assay, mammosphere assay; while cell cycle and apoptosis were examined by flowcytometry. Mitochondrial morphology was photographed by electron microscope. Biological change of mitochondria was detected by RT-PCR and oxygen consumption assay. Activation of WNT pathway and its downstream targets were evaluated by liciferase assay, immunohistochemistry staining and immunoblot analysis. Statistical methods used in the experiments besides microarray analysis was two-tailed t-test. RESULTS: WNT5B was elevated both in the tumor and the patients' serum. Suppression of WNT5B remarkably impaired cell growth, migration and mammosphere formation. Additionally, G0/G1 cell cycle arrest and caspase-independent apoptosis was observed. Study of the possible mechanism indicated that these effects occurred through suppression of mitochondrial biogenesis, as evidenced by reduced mitochondrial DNA (MtDNA) and compromised oxidative phosphorylation (OXPHOS). In Vivo and in vitro data uncovered that WNT5B modulated mitochondrial physiology was mediated by MCL1, which was regulated by WNT/ß-catenin responsive gene, Myc. Clinic data analysis revealed that both WNT5B and MCL1 are associated with enhanced metastasis and decreased disease-free survival. CONCLUSIONS: All our findings suggested that WNT5B/MCL1 cascade is critical for TNBC and understanding its regulatory apparatus provided valuable insight into the pathogenesis of the tumor development and the guidance for targeting therapeutics.


Assuntos
Proteína de Sequência 1 de Leucemia de Células Mieloides/biossíntese , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Proteínas Wnt/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Estudos de Coortes , Feminino , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/fisiologia , Taxa de Sobrevida/tendências , Neoplasias de Mama Triplo Negativas/diagnóstico
12.
Invest New Drugs ; 31(3): 685-95, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22847785

RESUMO

PURPOSE: Prolonged exposure of cancer cells to triapine, an inhibitor of ribonucleotide reductase, followed by gemcitabine enhances gemcitabine activity in vitro. Fixed-dose-rate gemcitabine (FDR-G) has improved efficacy compared to standard-dose. We conducted a phase I trial to determine the maximum tolerated dose (MTD), safety, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary efficacy of prolonged triapine infusion followed by FDR-G. EXPERIMENTAL DESIGN: Triapine was given as a 24-hour infusion, immediately followed by FDR-G (1000 mg/m(2) over 100-minute). Initially, this combination was administered days 1 and 8 of a 21-day cycle (Arm A, triapine starting dose 120 mg); but because of myelosuppression, it was changed to days 1 and 15 of a 28-day cycle (Arm B, starting dose of triapine 75 mg). Triapine steady-state concentrations (Css) and circulating ribonucleotide reductase M2-subunit (RRM2) were measured. RESULTS: Thirty-six patients were enrolled. The MTD was determined to be triapine 90 mg (24-hour infusion) immediately followed by gemcitabine 1000 mg/m(2) (100-minute infusion), every 2 weeks of a 4-week cycle. DLTs included grade 4 thrombocytopenia, leukopenia and neutropenia. The treatment was well tolerated with fatigue, nausea/vomiting, fever, transaminitis, and cytopenias being the most common toxicities. Among 30 evaluable patients, 1 had a partial response and 15 had stable disease. Triapine PK was similar, although more variable, compared to previous studies using doses normalized to body-surface-area. Steady decline in circulating levels of RRM2 may correlate with outcome. CONCLUSIONS: This combination was well tolerated and showed evidence of preliminary activity in this heavily pretreated patient population, including prior gemcitabine failure.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Neoplasias/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Anemia/induzido quimicamente , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Desoxicitidina/administração & dosagem , Desoxicitidina/efeitos adversos , Desoxicitidina/análogos & derivados , Feminino , Humanos , Leucopenia/induzido quimicamente , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias/sangue , Piridinas/administração & dosagem , Piridinas/efeitos adversos , Piridinas/farmacocinética , Ribonucleosídeo Difosfato Redutase/sangue , Tiossemicarbazonas/administração & dosagem , Tiossemicarbazonas/efeitos adversos , Tiossemicarbazonas/farmacocinética , Trombocitopenia/induzido quimicamente , Gencitabina
13.
Clin Sci (Lond) ; 124(9): 567-78, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23113760

RESUMO

The overexpression of RRM2 [RR (ribonucleotide reductase) small subunit M2] dramatically enhances the ability of the cancer cell to proliferate and to invade. To investigate further the relevance of RRM2 and CRCs (colorectal cancers), we correlated the expression of RRM2 with the clinical outcome of CRCs. A retrospective outcome study was conducted on CRCs collected from the COH [(City of Hope) National Medical Center, 217 cases] and ZJU (Zhejiang University, 220 cases). IHC (immunohistochemistry) was employed to determine the protein expression level of RRM2, and quantitative real-time PCR was employed to validate. Multivariate logistic analysis indicated that the adjusted ORs (odds ratios) of RRM2-high for distant metastases were 2.06 [95% CI (confidence interval), 1.01-4.30] and 5.89 (95% CI, 1.51-39.13) in the COH and ZJU sets respectively. The Kaplan-Meier analysis displayed that high expression of RRM2 had a negative impact on the OS (overall survival) and PFS (progress-free survival) of CRC in both sets significantly. The multivariate Cox analysis further demonstrated that HRs (hazard ratios) of RRM2-high for OS were 1.88 (95% CI, 1.03-3.36) and 2.06 (95% CI, 1.10-4.00) in the COH and ZJU sets respectively. Stratification analysis demonstrated that the HR of RRM2 dramatically increased to 12.22 (95% CI, 1.62-258.31) in the MMR (mismatch repair) gene-deficient subgroup in the COH set. Meanwhile, a real-time study demonstrated that down-regulation of RRM2 by siRNA (small interfering RNA) could significantly and specifically reduce the cell growth and adhesion ability in HT-29 and HCT-8 cells. Therefore RRM2 is an independent prognostic factor and predicts poor survival of CRCs. It is also a potential predictor for identifying good responders to chemotherapy for CRCs.


Assuntos
Neoplasias Colorretais/mortalidade , Ribonucleosídeo Difosfato Redutase/antagonistas & inibidores , Adulto , Biomarcadores Tumorais/análise , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , Estimativa de Kaplan-Meier , Metástase Neoplásica/patologia , Prognóstico , RNA Interferente Pequeno/farmacologia , Estudos Retrospectivos , Ribonucleosídeo Difosfato Redutase/biossíntese
14.
Nutr Cancer ; 65(1): 62-70, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23368914

RESUMO

To better understand the impact of undernutrition, nutritional risk, and nutritional treatment on the clinical outcomes of hospitalized cancer patients in China, the authors conducted a multicenter, cross-sectional study with 2248 cancer patients from 20 hospitals from January to June 2010. The authors defined 19.7% and 26.8% patients as undernourished at baseline and reassessment, respectively. Patients with gastrointestinal malignancies had a higher rate of undernutrition than other patients. The nutritional risk rate was 24.6% and 40.2% at baseline and reassessment, respectively. For patients with nutritional risk, the relative risk (RR) of adverse events (AEs) significantly increased with and without nutritional treatment. In comparison with the nonnutritional treatment subgroup, patients who received enteral nutrition (EN) or total parenteral nutrition (TPN) significantly reduced the RR of AE development. The RR of AEs for EN and TPN were 0.08 (95% CI: 0.01-0.62) and 0.56 (95% CI: 0.33-0.96), respectively. Separated nutrient infusion increased the risk of AEs. The authors concluded that undernutrition and nutritional risk are general problems that impact the outcomes of hospitalized cancer patients in China. Higher NRS2002 scores are related to AE risk but not weight loss. In nutritional treatment, EN and TPN can significantly reduce the risk of AEs.


Assuntos
Neoplasias/dietoterapia , Estado Nutricional , Adulto , Idoso , China , Estudos de Coortes , Estudos Transversais , Nutrição Enteral , Feminino , Hospitais de Ensino , Humanos , Masculino , Desnutrição/epidemiologia , Desnutrição/etiologia , Pessoa de Meia-Idade , Neoplasias/complicações , Nutrição Parenteral Total , Estudos Prospectivos , Fatores de Risco , Resultado do Tratamento
15.
Comput Math Methods Med ; 2022: 2656480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110576

RESUMO

Background: Biglycan (BGN) is a family member of small leucine-rich repeat proteoglycans. High expression of BGN might enhance the invasion and metastasis in some types of tumors. Here, the prognostic significance of BGN was evaluated in gastric cancer. Material and Methods. Two independent Gene Expression Omnibus (GEO) gastric cancer microarray datasets (n = 64 and n = 432) were collected for this study. Kaplan-Meier analysis was applied to evaluate if BGN impacts the outcomes of gastric cancer. Protein-protein interaction (PPI) analysis was performed on gastric cancer-related genes and BGN targets, and those interactions with confidence interval (CI) ≥ 0.7 were chosen to construct a PPI network. The gene set enrichment analysis (GSEA) was used to explore BGN and cancer-related gene signatures. Gene Transcription Regulation Database (GTRD) and ALGGEN-PROMO predicted the transcription factor binding sites (TFBSs) of the BGN promoter. BGN protein level in gastric cancer tissue was determined by immunohistochemistry (IHC). Bioinformatic analysis predicted the putative TFs of BGN. Results: For gastric cancer, the mRNA expression level of BGN in tumor tissue was significantly higher than that in normal tissue. Kaplan-Meier analysis showed that higher expression of BGN mRNA was significantly associated with more reduced recurrence-free survival (RFS). GSEA results suggested that BGN was significantly enriched in gene signatures related to metastasis and poor prognosis, revealing that BGN might be associated with cell proliferation, poor differentiation, and high invasiveness of gastric cancer. Meanwhile, the putative TFs, including AR, E2F1, and TCF4, were predicted by bioinformatic analysis and also significantly correlated with expression of BGN in mRNA levels. Conclusion: High expression of BGN mRNA was significantly related to poor prognosis, which suggested that BGN was a potential prognostic biomarker and therapeutic target of gastric cancer.


Assuntos
Neoplasias Gástricas , Biglicano/genética , Biglicano/metabolismo , Biomarcadores , Humanos , Prognóstico , RNA Mensageiro/metabolismo , Neoplasias Gástricas/metabolismo , Fatores de Transcrição
16.
Biochem Biophys Res Commun ; 410(1): 102-7, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21640705

RESUMO

Ribonucleotide reductase (RR) is a rate-limiting enzyme that catalyzes de novo conversion of ribonucleotide 5'-diphosphates to the corresponding 2'-deoxynucleotide, essential for DNA synthesis and replication. The mutations or knockout of RR small subunit, p53R2, results in the depletion of mitochondrial DNA (mtDNA) in human, implying that p53R2 might play a critical role for maintaining mitochondrial homeostasis. In this study, siRNA against p53R2 knockdown approach is utilized to examine the impact of p53R2 depletion on mitochondria and to derive underlying mechanism in KB and PC-3 cancer cells. Our results reveal that the p53R2 expression not only positively correlates with mtDNA content, but also partakes in the proper mitochondria function, such as ATP synthesis, cytochrome c oxidase activity and membrane potential maintenance. Furthermore, overexpression of p53R2 reduces intracellular ROS and protects the mitochondrial membrane potential against oxidative stress. Unexpectedly, knockdown of p53R2 has a modest, if any, effect on mitochondrial and total cellular dNTP pools. Taken together, our study provides functional evidence that mitochondria is one of p53R2-targeted organelles and suggests an unexpected function of p53R2, which is beyond known RR function on dNTP synthesis, in mitochondrial homeostatic control.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Homeostase , Mitocôndrias/enzimologia , Neoplasias/enzimologia , Ribonucleotídeo Redutases/metabolismo , Trifosfato de Adenosina/biossíntese , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Potencial da Membrana Mitocondrial , Neoplasias/genética , Ribonucleotídeo Redutases/genética
17.
Proc Natl Acad Sci U S A ; 105(47): 18519-24, 2008 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19015526

RESUMO

Ribonucleotide reductase small subunit p53R2 was identified as a p53 target gene that provides dNTP for DNA damage repair. However, the slow transcriptional induction of p53R2 in RNA may not be rapid enough for prompt DNA damage repair, which has to occur within a few hours of damage. Here, we demonstrate that p53R2 becomes rapidly phosphorylated at Ser(72) by ataxia telangiectasia mutated (ATM) within 30 min after genotoxic stress. p53R2, as well as its heterodimeric partner RRM1, are associated with ATM in vivo. Mutational studies further indicate that ATM-mediated Ser(72) phosphorylation is essential for maintaining p53R2 protein stability and conferring resistance to DNA damage. The mutation of Ser(72) on p53R2 to alanine results in the hyperubiquitination of p53R2 and reduces p53R2 stability. MDM2, a ubiquitin ligase for p53, interacts and facilitates ubiquitination of the S72A-p53R2 mutant more efficiently than WT-p53R2 after DNA damage in vivo. Our results strongly suggest a novel mechanism for the regulation of p53R2 activity via ATM-mediated phosphorylation at Ser(72) and MDM2-dependent turnover of p53R2 dephosphorylated at the same residue.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Dano ao DNA , Proteínas de Ligação a DNA/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Ribonucleotídeo Redutases/metabolismo , Serina/metabolismo , Proteínas Supressoras de Tumor/fisiologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/química , Reparo do DNA , Humanos , Fosforilação , Ribonucleotídeo Redutases/química , Raios Ultravioleta
18.
Transl Oncol ; 14(1): 100901, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33091827

RESUMO

Adjuvant chemotherapy(AC) plays a substantial role in the treatment of locally advanced gastric cancer (LAGC), but the response remains poor. We aims to improve its efficacy in LAGC. Therefore, we identified the expression of eight genes closely associated with platinum and fluorouracil metabolism (RRM1, RRM2, RRM2B, POLH, DUT, TYMS, TYMP, MKI67) in the discovery cohort (N=291). And we further validated the findings in TCGA (N=279) and GEO. Overall survival (OS) was used as an endpoint. Univariate and multivariate Cox models were applied. A multivariate Cox regression model was simulated to predict the OS. In the discovery cohort, the univariate Cox model indicated that AC was beneficial to high-RRM1, high-DUT, low-RRM2, low-RRM2B, low-POLH, low-KI67, low-TYMS or low-TYMP patients, the results were validated in the TCGA cohort. The multivariate Cox model showed consistent results. Cumulative analysis indicated that patients with low C-Score respond poorly to the AC, whereas the high and medium C-Score patients significantly benefit from AC. A risk model based on the above variables successfully predicted the OS in both cohorts (AUC=0.75 and 0.67, respectively). Further validation in a panel of gastric cancer cell (GC) lines (N=37) indicated that C-Score is significantly associated with IC50 value to fluorouracil. Mutation profiling showed that C-Score was associated with the number and types of mutations. In conclusion, we successfully simulated a predictive signature for the efficacy of AC in LAGC patients and further explored the potential mechanisms. Our findings could promote precision medicine and improve the prognosis of LAGC patients.

19.
J Cancer ; 11(7): 1846-1858, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194796

RESUMO

Purpose: DDX39 is a DEAD-box RNA helicase that unwinds double-stranded RNA in an ATP-dependent manner. This study evaluated the prognostic and predictive significance of DDX39 in breast cancer (BC). Methods: The cellular proliferation, invasion, and drug cytotoxicity by DDX39 siRNA were evaluated in MCF7 (ER-positive) and MDA-MB-231 (ER-negative) cell lines. A total of 27 datasets (total 8110 accessible cases) with following-up information were collected from Asia, Europe, and North America to explore associations between DDX39 gene expression and clinical parameters of BC patients. Results: Down-regulation of DDX39 by siRNA significantly reduce the cell growth and invasion ability in MCF7 cells, but only slightly in MDA-MB-231 cells. The DDX39 mRNA level was elevated in breast adenocarcinoma compared with normal breast tissue (p<0.01). Higher DDX39 level was significantly correlated with larger tumor size (p<0.01) and poorer tumor differentiation (p<0.01). The prognostic significance of DDX39 for BC was assessed by pooled-analysis and meta-analysis. Kaplan-Meier analysis demonstrated that increased DDX39 mRNA expression was associated with poor outcomes significantly in a dose-dependent manner in ER-positive BC. The prognostic performance of DDX39 mRNA was comparable to 21-gene, 70-gene, and wound-response gene signatures, and it was superior to the TNM stage. Lower DDX39 expression was associated with reduced relative risk death on ER-positive BC with chemotherapy or radiotherapy. Inhibition of DDX39 by siRNA could significantly enhance the sensitivity of MCF-7 to doxorubicin. Conclusion: DDX39 may be a potential novel prognostic and predictive biomarker for BC patients with ER-positive status.

20.
Cancer Lett ; 492: 185-196, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32758616

RESUMO

Breast cancer is the most common cancer among women worldwide, with 70% being estrogen receptor-positive (ER+). Although ER-targeted treatment is effective in treating ER + breast cancer, chemoresistance and metastasis still prevail. Outcome-predictable biomarkers can help improve patient prognosis. Through the analysis of the Array Express database, The Cancer Genome Atlas-Breast Cancer datasets, and breast tumor tissue array results, we found that cytochrome c oxidase subunit 5a (COX5A) was related to poor prognosis of ER + breast cancer. Further studies revealed that COX5A was positively associated with metastasis and chemoresistance in ER + breast cancer. In vitro experiments showed that knockdown of COX5A was accompanied by a decrease in ERα expression, cell cycle arrest, and epithelial-mesenchymal transition blockade, resulting in an inhibition of proliferation and invasion. Knockdown of COX5A enhanced the chemosensitivity of breast cancer cells by decreasing adenosine triphosphate and increasing reactive oxygen species levels. We report that miR-204 can target and inhibit the expression of COX5A, thus, reversing the functions of COX5A in ER + breast cancer cells. We found that COX5A may serve as a prognostic biomarker in ER + breast cancer.


Assuntos
Neoplasias da Mama/patologia , Complexo IV da Cadeia de Transporte de Elétrons/fisiologia , MicroRNAs/fisiologia , Receptores de Estrogênio/análise , Adulto , Idoso , Neoplasias da Mama/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/genética , Transição Epitelial-Mesenquimal , Feminino , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA