Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell Mol Life Sci ; 81(1): 155, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38538986

RESUMO

The prostate is a vital accessory gonad in the mammalian male reproductive system. With the ever-increasing proportion of the population over 60 years of age worldwide, the incidence of prostate diseases, such as benign prostatic hyperplasia (BPH) and prostate cancer (PCa), is on the rise and is gradually becoming a significant medical problem globally. The notch signaling pathway is essential in regulating prostate early development. However, the potential regulatory mechanism of Notch signaling in prostatic enlargement and hyperplasia remains unclear. In this study, we proved that overactivation of Notch1 signaling in mouse prostatic epithelial cells (OEx) led to prostatic enlargement via enhancing proliferation and inhibiting apoptosis of prostatic epithelial cells. Further study showed that N1ICD/RBPJ directly up-regulated the androgen receptor (AR) and enhanced prostatic sensitivity to androgens. Hyper-proliferation was not found in orchidectomized OEx mice without androgen supply but was observed after Dihydrotestosterone (DHT) supplementation. Our data showed that the number of mitochondrion in prostatic epithelial cells of OEx mice was increased, but the mitochondrial function was impaired, and the essential activity of the mitochondrial respiratory electron transport chain was significantly weakened. Disordered mitochondrial number and metabolic function further resulted in excessive accumulation of reactive oxygen species (ROS). Importantly, anti-oxidant N-Acetyl-L-Cysteine (NAC) therapy could alleviate prostatic hyperplasia caused by the over-activation of Notch1 signaling. Furthermore, we observed the incremental Notch signaling activity in progenitor-like club cells in the scRNA-seq data set of human BPH patients. Moreover, the increased number of TROP2+ progenitors and Club cells was also confirmed in our OEx mice. In conclusion, our study revealed that over-activated Notch1 signaling induces prostatic enlargement by increasing androgen receptor sensitivity, disrupting cellular mitochondrial metabolism, increasing ROS, and a higher number of progenitor cells, all of which can be effectively rescued by NAC treatment.


Assuntos
Hiperplasia Prostática , Animais , Humanos , Masculino , Camundongos , Androgênios/metabolismo , Mamíferos/metabolismo , Mitocôndrias/metabolismo , Próstata/metabolismo , Hiperplasia Prostática/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais
2.
Small ; 20(33): e2311477, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38554022

RESUMO

Seawater electrolysis is a promising but challenging strategy to generate carbon-neutral hydrogen. A grand challenge for hydrogen evolution reaction (HER) from alkaline seawater electrolysis is the development of efficient and stable electrocatalysts to overcome the limitation of sluggish kinetics. Here, a 3D nanorod hybrid catalyst is reported, which comprises heterostructure MoO2@NiMoO4 supported Ru nanoparticles (Ru/ MoO2@NiMoO4) with a size of ≈5 nm. Benefitting from the effect of strongly coupled interaction, Ru/MoO2@NiMoO4 catalyst exhibits a remarkable alkaline seawater hydrogen evolution performance, featured by a low overpotential of 184 mV at a current density of 1.0 A cm-2, superior to commercial Pt/C (338 mV). Experimental observations demonstrate that the heterostructure MoO2@NiMoO4 as an electron-accepting support makes the electron transfer from the Ru nanoparticles to MoO2, and thereby implements the electron redistribution of Ru site. Mechanistic analysis elucidates that the electron redistribution of active Ru site enhances the ability of hydrogen desorption, thereby promoting alkaline seawater HER kinetics and finally leading to a satisfactory catalysis performance at ampere-level current density of alkaline seawater electrolysis.

3.
Phys Chem Chem Phys ; 26(30): 20399-20408, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39016092

RESUMO

In carbon dioxide electrochemical reduction (CO2ER), since isolated catalysts encounter challenges in meeting the demands of intricate processes for producing multi-carbon (C2+) products, tandem catalysis is emerging as a promising approach. Nevertheless, there remains an insufficient theoretical understanding of designing tandem catalysts. Herein, we utilized density functional theory (DFT) to screen 80 tandem catalysts for efficient CO2ER to C2 products systematically, which combines the advantages of nitrogen-doped carbon-supported transition metal single-atom catalysts (M-N-C) and copper clusters. Three crucial criteria were designed to select structures for generation and transfer of *CO and facilitate C-C coupling. The optimal Cu/RuN4-pl catalyst exhibited an excellent ethanol production capacity. Additionally, the relationship between CO adsorption strength and transfer energy barrier was established, and the influence of the electronic structure on its adsorption strength was studied. This provided a novel and well-considered solution and theoretical guidance for the design of rational composition and structurally superior tandem catalysts.

4.
Exp Parasitol ; 262: 108788, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759775

RESUMO

Giardiasis is a common waterborne zoonotic disease caused by Giardia intestinalis. Upon infection, Giardia releases excretory and secretory products (ESPs) including secreted proteins (SPs) and extracellular vesicles (EVs). Although the interplay between ESPs and intestinal epithelial cells (IECs) has been previously described, the functions of EVs in these interactions and their differences from those of SPs require further exploration. In the present study, EVs and EV-depleted SPs were isolated from Giardia ESPs. Proteomic analyses of isolated SPs and EVs showed 146 and 91 proteins, respectively. Certain unique and enriched proteins have been identified in SPs and EVs. Transcriptome analysis of Caco-2 cells exposed to EVs showed 96 differentially expressed genes (DEGs), with 56 upregulated and 40 downregulated genes. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) indicated that Caco-2 genes related to metabolic processes, the HIF-1 signaling pathway, and the cAMP signaling pathway were affected. This study provides new insights into host-parasite interactions, highlighting the potential significance of EVs on IECs during infections.


Assuntos
Vesículas Extracelulares , Giardia lamblia , Mucosa Intestinal , Humanos , Células CACO-2 , Giardia lamblia/genética , Giardia lamblia/metabolismo , Vesículas Extracelulares/metabolismo , Mucosa Intestinal/parasitologia , Mucosa Intestinal/metabolismo , Perfilação da Expressão Gênica , Células Epiteliais/parasitologia , Células Epiteliais/metabolismo , Proteômica , Interações Hospedeiro-Parasita , Expressão Gênica , Transcriptoma , Giardíase/parasitologia
5.
J Environ Manage ; 368: 122074, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39128341

RESUMO

Hydrological connectivity is crucial for the healthy operation of wetland ecosystems. However, the current design of ecological corridors in wetland biodiversity networks is mostly based on species migration resistance, neglecting the important role of hydrological connectivity. How to incorporate hydrological connectivity into the wetland ecological corridor system (ECS) is still unclear. To answer the question, we proposed a framework for constructing a wetland ECS with the goal of improving conservation value of previously identified wetland biodiversity hotspots based on hydrological connectivity. In the proposed framework, we clarified the function-level-dimension of each corridor based on the dynamics of conservation value of biodiversity hotspots, the hierarchical classification of rivers and the dimension of hydrological connectivity. Then we determined the spatial distribution and functional zoning of the corridors by least cost model (LCM) using indicators that reflect wetland hydrological connectivity resistance, including water coverage, water use efficiency of vegetation, and land use suitability. The results are as follows: (1) to improve the overall hydrological connectivity and conservation value of biodiversity hotspots, 25 corridors should be constructed for vertical hydrological connectivity (with 3 for maintaining the status quo, 6 for improving and 16 for restoring connectivity) and 3 corridors should be constructed for lateral hydrological connectivity; (2) total area of all corridors are 11 km2, accounting for 6.79% of the study area (2.47% of core zone and 4.32% of buffer zone); (3) low suitability areas of hydrological vegetation gradient (HVG) are the most extensive, followed by low suitability areas of land use/cover change (LUCC) and the average fraction coverage of water surface (AFCW), accounting for 65.08%, 47.87% and 6.76% of the corridor coverage, respectively. The proposed framework of constructing wetland ECS in this study has the potential to provide the post-2020 global biodiversity framework and sustainable development goals with specific technical support and more targeted-control strategies for building a hydrological connected wetland biodiversity network.

6.
Life Sci ; 342: 122540, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428568

RESUMO

Transcatheter arterial chemoembolisation (TACE) is the standard of care for intermediate-stage hepatocellular carcinoma and selected patients with advanced hepatocellular carcinoma. However, TACE does not achieve a satisfactory objective response rate, and the concept of TACE refractoriness has been proposed to identify patients who do not fully benefit from TACE. Moreover, repeated TACE is necessary to obtain an optimal and sustained anti-tumour response, which may damage the patient's liver function. Therefore, studies have recently been performed to improve the effectiveness of TACE. In this review, we summarise the detailed molecular mechanisms associated with TACE responsiveness and relapse after this treatment to provide more effective targets for adjuvant therapy while helping to improve TACE regimens.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Quimioembolização Terapêutica/métodos , Artérias/patologia , Terapia Combinada
7.
Cancers (Basel) ; 16(10)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38791874

RESUMO

AIM: This study systematically explored the biological effects and mechanisms of PGC on gastric cancer (GC) cells in vitro and in vivo. METHOD: The critical biological roles of PGC in GC were assessed via EdU staining, Hoechst staining, flow cytometry, mouse models, CCK-8, wound healing, transwell, and sphere-forming assays. The interaction study with IQ-domain GTPase-activating protein 1 (IQGAP1) was used by Liquid chromatography-mass spectrometry co-immunoprecipitation, immunofluorescence staining, CHX-chase assay, MG132 assay, and qRT-PCR. RESULTS: PGC inhibited the proliferation, viability, epithelial-mesenchymal transition, migration, invasion, and stemness of GC cells and promoted GC cell differentiation. PGC suppressed subcutaneous tumor growth and peritoneal dissemination in vivo. The interaction study found PGC inhibits GC cell migration and invasion by downregulating IQGAP1 protein and IQGAP1-mediated Rho-GTPase signaling suppression. In addition, PGC disrupts the stability of the IQGAP1 protein, promoting its degradation and significantly shortening its half-life. Moreover, the expression levels of PGC and IQGAP1 in GC tissues were significantly negatively correlated. CONCLUSION: PGC may act as a tumor suppressor in the development and metastasis of GC. PGC can downregulate its interacting protein IQGAP1 and inhibit the Rho-GTPase pathway, thereby participating in the inhibition of GC cell migration and invasion.

8.
Viruses ; 16(2)2024 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-38400086

RESUMO

The CRISPR/Cas9 system is widely used to manipulate viral genomes. Although Alphaherpesvirinae genomes are large and complicated to edit, in recent years several Pseudorabies virus (PRV) mutants have been successfully generated using the CRISPR/Cas9 system. However, the application of CRISPR/Cas9 editing on another member of alpha herpesviruses, bovine herpesvirus-1 (BHV-1), is rarely reported. This paper reports a rapid and straightforward approach to manipulating herpesviruses genome using CRISPR/Cas9. The recombinant plasmids contained the left and right arm of the thymidine kinase (TK) gene of PRV or of the glycoprotein I (gI) and glycoprotein E (gE) of BHV-1. Upon the cleavage of the TK or gIgE gene by Cas9 protein, this was replaced by the enhanced green fluorescence protein (eGFP) by homologous recombination. With this approach, we generated recombinant TK-/eGFP+ PRV and gIgE-/eGFP+ BHV-1 mutants and then proceeded to characterize their biological activities in vitro and in vivo. In conclusion, we showed that alpha herpesvirus, including PRV and BHV-1, can be rapidly edited using the CRISPR/Cas9 approach paving the way to the development of animal herpesvirus vaccines.


Assuntos
Herpesvirus Bovino 1 , Herpesvirus Suídeo 1 , Pseudorraiva , Animais , Edição de Genes , Sistemas CRISPR-Cas , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/metabolismo , Pseudorraiva/prevenção & controle , Glicoproteínas/genética
9.
World J Gastrointest Oncol ; 16(8): 3687-3704, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39171183

RESUMO

BACKGROUND: Depression is strongly associated with colorectal cancer (CRC). Few bibliometric analyses have systematically summarized the research focus and recent progress in this field. AIM: To determine the research status and hotspots by bibliometric analysis of relevant publications on the relationship between CRC and depression. METHODS: Articles on depression in CRC patients were collected from the Web of Science Core Collection. CiteSpace and VOSviewer software were used to visualize bibliometric networks. RESULTS: From 2001 to 2022, Supportive Care in Cancer, the United States, Tilburg University, and Mols were the most productive and influential journal, country, institution, and author name. Co-occurrence cluster analysis of keywords placed quality of life, anxiety, and psychological stress in the center of the visual network diagram. Further clustering was performed for the clusters with studies of the relevant mechanism of action, which showed that: (1) Cytokines have a role essential for the occurrence and development of depressive disorders in CRC; (2) MicroRNAs have a role essential for the development of depressive disorders in CRC; (3) Some anticancer drugs have pro-depressant activity; and (4) Selective serotonin reuptake inhibitors have both antitumor and antidepressant activity. CONCLUSION: Life quality and psychological nursing of the cancer population were key topics. The roles of cytokines and microRNAs, the pro-depression activity of anticancer drugs and their antitumor properties deserve in-depth study.

10.
Bioresour Technol ; 397: 130452, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354963

RESUMO

This study utilized corn straw as the feedstock to synthesize biochar (BC) loaded with cobalt-zeolitic imidazolate framework nanoparticles and boron nitride quantum dots. The prepared BC composite, named BN3Z0.5BC, efficiently activated peracetic acid (PAA), resulting in the degradation of 94.8% of sulfadiazine (SDZ) in five minutes. Compared to pure BC, the SDZ removal rate increased nearly 5-fold. Mechanism analysis revealed that the main degradation pathway involves synergism between free and non-free radicals. The defect structure on the BC surface possesses a high charge density, stimulating PAA to produce more active species, while nitrogen-oxygen vacancy formation significantly promotes charge transfer. Besides, the unique structure of BC ensures good stability and recyclability, effectively controlling metal leaching. The BN3Z0.5BC/PAA system shows promising applicability across various water matrices, indicating a favorable application outlook.


Assuntos
Carvão Vegetal , Ácido Peracético , Poluentes Químicos da Água , Oxirredução , Poluentes Químicos da Água/química , Radicais Livres , Antibacterianos
11.
Carbohydr Polym ; 343: 122481, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39174102

RESUMO

The low solubility of pea protein isolate (PPI) greatly limits its functional properties and its wide application in food field. Thus, this study investigated the effects and mechanisms of cellulose nanocrystals (CNC) (0.1-0.4 %) and CaCl2 (0.4-1.6 mM) on the solubility of PPI. The results showed that the synergistic effect of CNC (0.3 %) and Ca2+ (1.2 mM) increased the solubility of PPI by 242.31 %. CNC and Ca2+ changed the molecular conformation of PPI, enhanced intermolecular forces, and thus induced changes in the molecular morphology of PPI. Meanwhile, the turbidity of PPI decreased, while surface hydrophobicity, the absolute zeta potential value, viscoelasticity, ß-sheet ratio, and thermal properties increased. CNC bound to PPI molecules through van der Waals force and hydrogen bond. Ca2+ could strengthen the crosslinking between CNC and PPI. In summary, it is proposed a valuable combination method to improve the solubility of PPI, and it is believed that this research is of great significance for expanding the application fields of PPI and modifying plant proteins.


Assuntos
Cálcio , Celulose , Nanopartículas , Proteínas de Ervilha , Solubilidade , Nanopartículas/química , Celulose/química , Proteínas de Ervilha/química , Cálcio/química , Pisum sativum/química , Interações Hidrofóbicas e Hidrofílicas , Cloreto de Cálcio/química , Ligação de Hidrogênio
12.
Int J Biol Macromol ; 271(Pt 1): 131979, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38821812

RESUMO

A simple but robust strategy of ball milling (20 Hz, 30 Hz for 30 s, 60 s, 120 s, 180 s) was utilized to modify bamboo shoots fiber (BSDF) in shrimp surimi. The water holding capacity, swelling capacity, and oil binding capacity of 30 Hz-60 s milled BSDF exhibited the highest values of 5.61 g/g, 3.13 mL/g, and 6.93 g/g, significantly higher (P < 0.05) than untreated one (3.65 g/g, 2.03 mL/g, 4.57 g/g). Ball-milled BSDF exhibited a small-sized structure with the relative crystallinity decreased from 40.44 % (control) to 11.12 % (30 Hz-180 s). The myosin thermal stability, gelation properties of surimi were significantly enhanced by incorporating 20 Hz-120 s and 30 Hz-60 s BSDF via promoting protein unfolding, covalent hydrophobic interactions, and hydrogen bonding. A matrix-reinforcing and water entrapping effect was observed, exhibiting reinforced networks with down-sized water tunnels. However, BSDF modified at 180 s contributed to over-aggregated networks with fractures and enlarged gaps. Appropriate ball-milled BSDF (20 Hz-120 s, and 30 Hz-60 s) resulted in a significant decrease in α-helix (P < 0.05), accompanied by an increase of ß-sheets and ß-turn. This work could bring some insights into the applications of modified BSDF and its roles in the gelation of surimi-based food.


Assuntos
Fibras na Dieta , Animais , Fibras na Dieta/análise , Brotos de Planta/química , Água/química , Fenômenos Químicos , Miosinas/química , Bambusa/química
13.
Front Plant Sci ; 15: 1344095, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469330

RESUMO

Homogentisate Phytyltransferase (HPT) catalyzes condensation of homogentisate (HGA) and phytyl diphosphate (PDP) to produce tocopherols, but can also synthesize tocotrienols using geranylgeranyl diphosphate (GGDP) in plants engineered for deregulated HGA synthesis. In contrast to prior tocotrienol biofortification efforts, engineering enhanced tocopherol concentrations in green oilseeds has proven more challenging due to the integral role of chlorophyll metabolism in supplying the PDP substrate. This study show that RNAi suppression of CHLSYN coupled with HPT overexpression increases tocopherol concentrations by >two-fold in Arabidopsis seeds. We obtained additional increases in seed tocopherol concentrations by engineering increased HGA production via overexpression of bacterial TyrA that encodes chorismate mutase/prephenate dehydrogenase activities. In overexpression lines, seed tocopherol concentrations increased nearly three-fold, and resulted in modest tocotrienol accumulation. We further increased total tocochromanol concentrations by enhancing production of HGA and GGDP by overexpression of the gene for hydroxyphenylpyruvate dioxygenase (HPPD). This shifted metabolism towards increased amounts of tocotrienols relative to tocopherols, which was reflected in corresponding increases in ratios of GGDP/PDP in these seeds. Overall, our results provide a theoretical basis for genetic improvement of total tocopherol concentrations in green oilseeds (e.g., rapeseed, soybean) through strategies that include seed-suppression of CHLSYN coupled with increased HGA production.

14.
J Agric Food Chem ; 72(15): 8784-8797, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38566473

RESUMO

Food protein carriers from different sources might have distinct stabilizing and enhancing effects on the same small molecule. To elucidate the molecular mechanism, five different sourced proteins including soy protein isolates (SPIs), whey protein isolates (WPIs), edible dock protein (EDP), Tenebrio molitor protein (TMP), and yeast protein (YP) were used to prepare protein hydrogels for delivering myricetin (Myr). The results suggested that the loading capacity order of Myr in different protein hydrogels was EDP (11.5%) > WPI (9.3%) > TMP (8.9%) > YP (8.0%) > SPI (7.6%), which was consistent with the sequence of binding affinity between Myr and different proteins. Among five protein hydrogels, EDP had an optimum loading ability since it possessed the highest hydrophobic amino acid content (45.52%) and thus provided a broad hydrophobic cavity for loading Myr. In addition, these protein-Myr composite hydrogels displayed the core-shell structure, wherein hydrogen bonding and hydrophobic interaction were the primary binding forces between proteins and Myr. Moreover, the thermal stability, storage stability, and sustained-release properties of Myr were significantly enhanced via these protein delivery systems. These findings can provide scientific guidance for deeper utilization of food alternative protein sources.


Assuntos
Flavonoides , Micelas , Flavonoides/química , Hidrogéis
15.
Microorganisms ; 12(4)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38674724

RESUMO

In recent years, the Sanjiang Plain has experienced drastic human activities, which have dramatically changed its ecological environment. Soil microorganisms can sensitively respond to changes in soil quality as well as ecosystem function. In this study, we investigated the changes in soil microbial community diversity and composition of three typical land use types (forest, wetland and cropland) in the Sanjiang Plain using phospholipid fatty acid analysis (PLFA) technology, and 114 different PLFA compounds were identified. The results showed that the soil physicochemical properties changed significantly (p < 0.05) among the different land use types; the microbial diversity and abundance in cropland soil were lower than those of the other two land use types. Soil pH, soil water content, total organic carbon and available nitrogen were the main soil physico-chemical properties driving the composition of the soil microbial community. Our results indicate that the soil microbial community response to the three different habitats is complex, and provide ideas for the mechanism by which land use changes in the Sanjiang Plain affect the structure of soil microbial communities, as well as a theoretical basis for the future management and sustainable use of the Sanjiang plain, in the northeast of China.

16.
Food Chem ; 447: 138975, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38489882

RESUMO

Here, the influence and potential mechanism by which cellulose nanocrystals (CNC) collaborated with Ca2+ enhancing the heat-induced gelation of pea protein isolate (PPI) were investigated. It was found that the combination of 0.45% CNC and 15 mM Ca2+ synergistically increased the gel strength (from 14.18 to 65.42 g) and viscoelasticity of PPI while decreased the water holding capacity. The improved particle size, turbidity, and thermostability as well as the reduced solubility, crystallinity, and gel porosity were observed in CNC/CaCl2 composite system. CNC fragments bind to specific amino acids in 11S legumin and 7S vicilin mainly through hydrogen bonding and van der Waals forces. Moreover, changes in the protein secondary structure and enhancement of the molecular interaction induced by CNC and Ca2+ could favor the robust gel network. The results will provide a new perspective on the functional regulation of pea protein and the creation of pea protein gel-based food.


Assuntos
Nanopartículas , Proteínas de Ervilha , Celulose/química , Cálcio , Géis/química , Água/química , Nanopartículas/química
17.
Food Chem ; 447: 138992, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38503066

RESUMO

The low solubility limits the utilization of other functional characteristics of wheat gluten (WG). This study effectively improved the solubility of WG through protease modification and explored the potential mechanism of protease modification to enhance the solubility of WG, further stimulating the potential application of WG in the food industry. Solubility of WG modified with alkaline protease, complex protease, and neutral protease was enhanced by 98.99%, 54.59%, and 51.68%, respectively. Notably, the content of ß-sheet was reduced while the combined effect of hydrogen bond and ionic bond were increased after protease modification. Meanwhile, the reduced molecular size and viscoelasticity as well as the elevated surface hydrophobicity, thermostability, water absorption capacity, and crystallinity were observed in modified WG. Moreover, molecular docking indicated that protease was specifically bound to the amino acid residues of WG through hydrogen bonding, hydrophobic interaction, and salt bridge.


Assuntos
Peptídeo Hidrolases , Triticum , Peptídeo Hidrolases/metabolismo , Triticum/química , Simulação de Acoplamento Molecular , Glutens/química , Aminoácidos/metabolismo
18.
Biosens Bioelectron ; 254: 116205, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38484411

RESUMO

In this study, based on aggregation-induced emission (AIE) effect and antenna effect, a novel portable fluorescent responsive membrane was constructed with red carbon dots (R-CDs) as reference signal and terbium coordination polymer (Tb-AMP CPs) as response signal for visual, instrument-free, and sensitive detection of fluoroquinolones (FQs). Specifically, the fluorescent responsive membrane (R-T membrane) was prepared by physically depositing R-CDs with AIE property and Tb-AMP CPs on the surface of polyvinylidene fluoride filter membranes at ambient temperature. In the presence of FQs, Tb3+ in the Tb-AMP CPs of the prepared membrane coordinated with the ß-diketone structure of FQs, which turned on the yellow-green fluorescence through the "antenna effect". As the concentration of FQs increased, the R-T membrane achieved a fluorescent color transition from bright pink to yellow-green. Its visual detection sensitivity for three FQs, including ciprofloxacin, difloxacin, and enrofloxacin, was 0.01 µM, and the detection limits were 7.4 nM, 7.8 nM, and 9.2 nM, respectively, by analyzing the color parameter green. In the residue analysis of FQs in real samples, the constructed membrane also exhibited remarkable anti-interference and reliability, which is of great significance for ensuring the safety of animal-derived food.


Assuntos
Técnicas Biossensoriais , Pontos Quânticos , Animais , Fluoroquinolonas , Térbio/química , Carbono/química , Polímeros/química , Reprodutibilidade dos Testes , Pontos Quânticos/química , Corantes Fluorescentes/química
19.
Carbohydr Polym ; 332: 121919, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431397

RESUMO

The differences in the gelling properties of soy protein isolate (SPI) and soy protein isolate amyloid fibrils (SAFs) as well as the role of cellulose nanocrystals (CNC) in regulating their gel behaviors were investigated in this study. The binding of CNC to ß-conglycinin (7S), glycinin (11S), and SAFs was predominantly driven by non-covalent interactions. CNC addition reduced the particle size, turbidity, subunit segments, and crystallinity of SPI and SAFs, promoted the conversion of α-helix to ß-sheet, improved the thermal stability, exposed more tyrosine and tryptophan residues, and enhanced the intermolecular interactions. A more regular and ordered lamellar network structure was formed in the SAFs-CNC composite gel, which could be conducive to the improvement of gel quality. This study would provide theoretical reference for the understanding of the regulatory mechanism of protein amyloid fibrils gelation as well as the high-value utilization of SAFs-CNC complex as a functional protein-based material or food ingredient in food field.


Assuntos
Celulose , Nanopartículas , Celulose/química , Proteínas de Soja/química , Amiloide/química , Tamanho da Partícula
20.
Int Immunopharmacol ; 133: 112069, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38643710

RESUMO

Epigallocatechin-3-gallate (EGCG) is an important tea polyphenol with anti-tumor potential. Our previous studies revealed that EGCG was a promising immune checkpoint inhibitor (ICI) as it could downregulate expression of programmed cell death 1 ligand 1 (PD-L1) in tumor cells, thereby resulting tumor killing effect. In particular, EGCG can effectively avoid the inflammatory storm caused by anti-tumor therapy, which is a healthy green capacity absent from many ICIs. However, the relationship between EGCG and programmed cell death 1 (PD-1) of T cells remains unclear. In this work, we explored the effect of EGCG on T cells and found that EGCG suppressed PD-1 via inhibiting NF-κB phosphorylation and nuclear translocation. Furtherly, the capability of EGCG was confirmed in tumor-bearing mice to inhibit PD-1 expression in T cells and enhance apoptosis in tumor cells. These results implied that EGCG could inhibit the expression of PD-1 in T cells, thereby promoting anti-tumor effects of T cells. EGCG will be a promising candidate in anti-tumor therapy.


Assuntos
Transporte Ativo do Núcleo Celular , Catequina , NF-kappa B , Receptor de Morte Celular Programada 1 , Linfócitos T , Animais , Feminino , Humanos , Camundongos , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA