RESUMO
To clarify the effects of volatile-char interaction on the redistribution of fuel-N to N2 during devolatilization and the reduction of NO through gas-solid reactions during combustion, two types of experiments were performed on a novel reactor. The separate combustion of volatile and char and the combustion of entrained pulverized coal, and the formation of NO was examined between 800 and 1100 degrees C by using four typical Chinese coals with different ranks. The effect of volatile-char interaction on fuel-N conversion to NO during combustion was elucidated through comparing the NO emissions from the two types of combustion experiments. The results show that the volatile-char interaction is more important in the redistribution of fuel-N to N2 during devolatilization than in the reduction of NO over 900 degrees C, and a contrary conclusion is obtained below 850 degrees C for all used coals. A specific parameter has been proposed to characterize the relative importance of the volatile-char interaction in the redistribution of fuel-N to N2 during devolatilization to the interaction in the reduction of NO to N2 during simulataneous combustion of volatile and char. The results are of significance for minimizing the NO formation in industrial combustion processes.