RESUMO
Plants have evolved a range of adaptive mechanisms that adjust their development and physiology to variable external conditions, particularly in perennial species subjected to long-term interplay with the environment. Exploiting the allelic diversity within available germplasm and leveraging the knowledge of the mechanisms regulating genotype interaction with the environment are crucial to address climatic challenges and assist the breeding of novel cultivars with improved resilience. The development of multisite collections is of utmost importance for the conservation and utilization of genetic materials and will greatly facilitate the dissection of genotype-by-environment interaction. Such resources are still lacking for perennial trees, especially with the intrinsic difficulties of successful propagation, material exchange, and living collection maintenance. This work describes the concept, design, and realization of the first multisite peach (Prunus persica) reference collection (PeachRefPop) located across different European countries and sharing the same experimental design. Other than an invaluable tool for scientific studies in perennial species, PeachRefPop provides a milestone in an international collaborative project for the conservation and exploitation of European peach germplasm resources and, ultimately, as a true heritage for future generations.
Assuntos
Prunus persica , Banco de Sementes , Europa (Continente)RESUMO
BACKGROUND: Texture is one of the most important fruit quality attributes. In peach, stony hard (SH) is a recessive monogenic trait (hd/hd) that confers exceptionally prolonged firm flesh to fully ripe fruit. Previous studies have shown that the SH mutation affects the fruit ability to synthesize appropriate amounts of indol-3-acetic acid (IAA), which orchestrates the ripening processes through the activation of system 2 ethylene pathway. Allelic variation in a TC microsatellite located within the first intron of PpYUC11-like (a YUCCA-like auxin-biosynthesis gene) has been recently proposed as the causal mutation of the SH phenotype. RESULTS: The simple genetic determinism of the SH trait has been clarified through genome-wide association and LD analyses in a diverse set of accessions, restricting the hd locus to an interval of about 1.8 Mbp in chromosome 6. The comparison of fruit transcriptome data from non-SH (melting flesh) and SH accessions provided an expression patterns overview of the annotated transcripts within the hd locus, confirming the absence of PpYUC11-like expression in SH fruits. To explore further possible associations between genomic variants at the hd locus and the SH phenotype, re-sequencing data of the SH accession 'D41-62' were compared with several SH and non-SH accessions with different genetic backgrounds. A further step of validation was provided through the evaluation of variant-trait association in two bi-parental F2 populations issued from the SH accession 'D41-62' and a panel of advanced breeding selections, showing perfect co-segregation of the PpYUC11-like intron TC20 allele and the SH phenotype. CONCLUSIONS: In this study, we provide a multi-level validation of the genetic control of the SH trait through the integration of genome-wide association mapping, transcriptome analysis and whole-genome resequencing data for SH and non-SH accessions, and marker-trait association in a panel of advanced breeding selections and segregating progenies. Collectively, our data confirm with high confidence the role of allelic variation at PpYUC11-like locus as the genetic determinant of the SH trait, opening interesting perspectives at both biological and applied research level.
Assuntos
Frutas/genética , Genes de Plantas/genética , Prunus persica/genética , Frutas/anatomia & histologia , Perfilação da Expressão Gênica , Genes de Plantas/fisiologia , Loci Gênicos/genética , Marcadores Genéticos , Genoma de Planta/genética , Estudo de Associação Genômica Ampla , Genômica , Desequilíbrio de Ligação , Prunus persica/anatomia & histologia , Característica Quantitativa Herdável , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNARESUMO
BACKGROUND: Plum pox virus (PPV), agent of Sharka disease, is the most important quarantine pathogen of peach (P. persica L. Batsch). Extensive evaluation of peach germplasm has highlighted the lack of resistant sources, while suggesting the presence of a quantitative disease resistance, expressed as reduction in the intensity of symptoms. Unravelling the genetic architecture of peach response to PPV infection is essential for pyramiding resistant genes and for developing more tolerant varieties. For this purpose, a genome-wide association (GWA) approach was applied in a panel of accessions phenotyped for virus susceptibility and genotyped with the IPSC peach 9 K SNP Array, and coupled with an high-coverage resequencing of the tolerant accession 'Kamarat'. RESULTS: Genome-wide association identified three highly significant associated loci on chromosome 2 and 3, accounting for most of the reduction in PPV-M susceptibility within the analysed peach population. The exploration of associated intervals through whole-genome comparison of the tolerant accession 'Kamarat' and other susceptible accessions, including the PPV-resistant wild-related species P. davidiana, allow the identification of allelic variants in promising candidate genes, including an RTM2-like gene already characterized in A. thaliana. CONCLUSIONS: The present study is the first effort to identify genetic factors involved in Sharka disease in peach germplasm through a GWA approach. We provide evidence of the presence of quantitative resistant loci in a collection of peach accessions, identifying major loci and highly informative SNPs that could be useful for marker assisted selection. These results could serve as reference bases for future research aimed at the comprehension of genetic mechanism regulating the complex peach-PPV interaction.
Assuntos
Resistência à Doença/genética , Doenças das Plantas/imunologia , Vírus Eruptivo da Ameixa/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Prunus persica/genética , Estudo de Associação Genômica Ampla , Genótipo , Fenótipo , Doenças das Plantas/virologia , Prunus persica/imunologiaRESUMO
BACKGROUND: Carotenoids are plant metabolites which are not only essential in photosynthesis but also important quality factors in determining the pigmentation and aroma of flowers and fruits. To investigate the regulation of carotenoid metabolism, as related to norisoprenoids and other volatile compounds in peach (Prunus persica L. Batsch.), and the role of carotenoid dioxygenases in determining differences in flesh color phenotype and volatile composition, the expression patterns of relevant carotenoid genes and metabolites were studied during fruit development along with volatile compound content. Two contrasted cultivars, the yellow-fleshed 'Redhaven' (RH) and its white-fleshed mutant 'Redhaven Bianca' (RHB) were examined. RESULTS: The two genotypes displayed marked differences in the accumulation of carotenoid pigments in mesocarp tissues. Lower carotenoid levels and higher levels of norisoprenoid volatiles were observed in RHB, which might be explained by differential activity of carotenoid cleavage dioxygenase (CCD) enzymes. In fact, the ccd4 transcript levels were dramatically higher at late ripening stages in RHB with respect to RH. The two genotypes also showed differences in the expression patterns of several carotenoid and isoprenoid transcripts, compatible with a feed-back regulation of these transcripts. Abamine SG - an inhibitor of CCD enzymes - decreased the levels of both isoprenoid and non-isoprenoid volatiles in RHB fruits, indicating a complex regulation of volatile production. CONCLUSIONS: Differential expression of ccd4 is likely to be the major determinant in the accumulation of carotenoids and carotenoid-derived volatiles in peach fruit flesh. More in general, dioxygenases appear to be key factors controlling volatile composition in peach fruit, since abamine SG-treated 'Redhaven Bianca' fruits had strongly reduced levels of norisoprenoids and other volatile classes. Comparative functional studies of peach carotenoid cleavage enzymes are required to fully elucidate their role in peach fruit pigmentation and aroma.
Assuntos
Dioxigenases/metabolismo , Mutação/genética , Norisoprenoides/metabolismo , Pigmentação/genética , Proteínas de Plantas/metabolismo , Prunus/enzimologia , Compostos Orgânicos Voláteis/metabolismo , Análise por Conglomerados , Dioxigenases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas , Fenótipo , Proteínas de Plantas/antagonistas & inibidores , Análise de Componente Principal , Prunus/genética , Característica Quantitativa Herdável , VolatilizaçãoRESUMO
The timing of fruit maturity is an important trait in sweet cherry production and breeding. Phenotypic variation for phenology of fruit maturity in sweet cherry appears to be under strong genetic control, but that control might be complicated by phenotypic instability across environments. Although such genotype-by-environment interaction (G × E) is a common phenomenon in crop plants, knowledge about it is lacking for fruit maturity timing and other sweet cherry traits. In this study, 1673 genome-wide SNP markers were used to estimate genomic relationships among 597 weakly pedigree-connected individuals evaluated over two seasons at three locations in Europe and one location in the USA, thus sampling eight 'environments'. The combined dataset enabled a single meta-analysis to investigate the environmental stability of genomic predictions. Linkage disequilibrium among marker loci declined rapidly with physical distance, and ordination of the relationship matrix suggested no strong structure among germplasm. The most parsimonious G × E model allowed heterogeneous genetic variance and pairwise covariances among environments. Narrow-sense genomic heritability was very high (0.60-0.83), as was accuracy of predicted breeding values (>0.62). Average correlation of additive effects among environments was high (0.96) and breeding values were highly correlated across locations. Results indicated that genomic models can be used in cherry to accurately predict date of fruit maturity for untested individuals in new environments. Limited G × E for this trait indicated that phenotypes of individuals will be stable across similar environments. Equivalent analyses for other sweet cherry traits, for which multiple years of data are commonly available among breeders and cultivar testers, would be informative for predicting performance of elite selections and cultivars in new environments.
RESUMO
Sharka, caused by Plum Pox Virus (PPV), is by far the most important infectious disease of peach [P. persica (L.) Batsch] and other Prunus species. The progressive spread of the virus in many important growing areas throughout Europe poses serious issues to the economic sustainability of stone fruit crops, peach in particular. The adoption of internationally agreed-upon rules for diagnostic tests, strain-specific monitoring schemes and spatial-temporal modeling of virus spread, are all essential for a more effective sharka containment. The EU regulations on nursery activity should be modified based on the zone delimitation of PPV presence, limiting open-field production of propagation materials only to virus-free areas. Increasing the efficiency of preventive measures should be augmented by the short-term development of resistant cultivars. Putative sources of resistance/tolerance have been recently identified in peach germplasm, although the majority of novel resistant sources to PPV-M have been found in almond. However, the complexity of introgression from related-species imposes the search for alternative strategies. The use of genetic engineering, particularly RNA interference (RNAi)-based approaches, appears as one of the most promising perspectives to introduce a durable resistance to PPV in peach germplasm, notwithstanding the well-known difficulties of in vitro plant regeneration in this species. In this regard, rootstock transformation to induce RNAi-mediated systemic resistance would avoid the transformation of numerous commercial cultivars, and may alleviate consumer resistance to the use of GM plants.