Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cells ; 13(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534355

RESUMO

Neuroinflammatory and neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI) and Amyotrophic lateral sclerosis (ALS) are chronic major health disorders. The exact mechanism of the neuroimmune dysfunctions of these disease pathogeneses is currently not clearly understood. These disorders show dysregulated neuroimmune and inflammatory responses, including activation of neurons, glial cells, and neurovascular unit damage associated with excessive release of proinflammatory cytokines, chemokines, neurotoxic mediators, and infiltration of peripheral immune cells into the brain, as well as entry of inflammatory mediators through damaged neurovascular endothelial cells, blood-brain barrier and tight junction proteins. Activation of glial cells and immune cells leads to the release of many inflammatory and neurotoxic molecules that cause neuroinflammation and neurodegeneration. Gulf War Illness (GWI) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are chronic disorders that are also associated with neuroimmune dysfunctions. Currently, there are no effective disease-modifying therapeutic options available for these diseases. Human induced pluripotent stem cell (iPSC)-derived neurons, astrocytes, microglia, endothelial cells and pericytes are currently used for many disease models for drug discovery. This review highlights certain recent trends in neuroinflammatory responses and iPSC-derived brain cell applications in neuroinflammatory disorders.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Humanos , Doenças Neuroinflamatórias , Células Endoteliais , Inflamação
2.
Nanoscale ; 5(18): 8288-306, 2013 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23838744

RESUMO

The control of the DNA condensation process is essential for compaction of DNA in chromatin, as well as for biological applications such as nonviral gene therapy. This review endeavours to reflect the progress of investigations on DNA condensation effects of nanostructure-based condensing agents (such as nanoparticles, nanotubes, cationic polymer and peptide agents) observed by using atomic force microscopy (AFM) and other techniques. The environmental effects on structural characteristics of nanostructure-induced DNA condensates are also discussed.


Assuntos
DNA/química , Nanoestruturas/química , Dendrímeros/química , Terapia Genética , Humanos , Peptídeos/química , Preparações Farmacêuticas/química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA