Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37108166

RESUMO

Plant-growth-promoting bacteria (PGPB) help plants thrive in polluted environments and increase crops yield using fewer inputs. Therefore, the design of tailored biofertilizers is of the utmost importance. The purpose of this work was to test two different bacterial synthetic communities (SynComs) from the microbiome of Mesembryanthemum crystallinum, a moderate halophyte with cosmetic, pharmaceutical, and nutraceutical applications. The SynComs were composed of specific metal-resistant plant-growth-promoting rhizobacteria and endophytes. In addition, the possibility of modulating the accumulation of nutraceutical substances by the synergetic effect of metal stress and inoculation with selected bacteria was tested. One of the SynComs was isolated on standard tryptone soy agar (TSA), whereas the other was isolated following a culturomics approach. For that, a culture medium based on M. crystallinum biomass, called Mesem Agar (MA), was elaborated. Bacteria of three compartments (rhizosphere soil, root endophytes, and shoot endophytes) were isolated on standard TSA and MA media, stablishing two independent collections. All bacteria were tested for PGP properties, secreted enzymatic activities, and resistance towards As, Cd, Cu, and Zn. The three best bacteria from each collection were selected in order to produce two different consortiums (denominated TSA- and MA-SynComs, respectively), whose effect on plant growth and physiology, metal accumulation, and metabolomics was evaluated. Both SynComs, particularly MA, improved plant growth and physiological parameters under stress by a mixture of As, Cd, Cu, and Zn. Regarding metal accumulation, the concentrations of all metals/metalloids in plant tissues were below the threshold for plant metal toxicity, indicating that this plant is able to thrive in polluted soils when assisted by metal/metalloid-resistant SynComs and could be safely used for pharmaceutical purposes. Initial metabolomics analyses depict changes in plant metabolome upon exposure to metal stress and inoculation, suggesting the possibility of modulating the concentration of high-value metabolites. In addition, the usefulness of both SynComs was tested in a crop plant, namely Medicago sativa (alfalfa). The results demonstrate the effectiveness of these biofertilizers in alfalfa, improving plant growth, physiology, and metal accumulation.


Assuntos
Arsênio , Mesembryanthemum , Metais Pesados , Poluentes do Solo , Arsênio/metabolismo , Mesembryanthemum/metabolismo , Cádmio/metabolismo , Ágar , Biodegradação Ambiental , Raízes de Plantas/metabolismo , Metais Pesados/metabolismo , Bactérias , Endófitos/metabolismo , Suplementos Nutricionais/análise , Preparações Farmacêuticas/metabolismo , Poluentes do Solo/metabolismo , Solo
2.
Int J Syst Evol Microbiol ; 70(5): 3287-3294, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32375987

RESUMO

Strain RA15T was isolated from the rhizosphere of the halophyte plant Arthrocnemum macrostachyum growing in the Odiel marshes (Huelva, Spain). RA15T cells were Gram stain-negative, non-spore-forming, aerobic rods and formed cream-coloured, opaque, mucoid, viscous, convex, irregular colonies with an undulate margin. Optimal growth conditions were observed on tryptic soy agar (TSA) plates supplemented with 2.5 % NaCl (w/v) at pH 7.0 and 28 °C, although it was able to grow at 4-32 °C and at pH values of 5.0-9.0. The NaCl tolerance range was from 0 to 15 %. The major respiratory quinone was Q8 but Q9 was also present. The most abundant fatty acids were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C17 : 1 ω8c and C16 : 0. The polar lipids profile comprised phosphatidylglycerol and phosphatidylethanolamine as the most abundant representatives. Phylogenetic analyses confirmed the well-supported affiliation of strain RA15T within the genus Pseudoalteromonas, close to the type strains of Pseudoalteromonas neustonica, Pseudoalteromonas prydzensis and Pseudoalteromonas mariniglutinosa. Results of comparative phylogenetic and phenotypic studies between strain RA15T and its closest related species suggest that RA15T could be a new representative of the genus Pseudoalteromonas, for which the name Pseudoalteromonas rhizosphaerae sp. nov. is proposed. The type strain is RA15T (=CECT 9079T=LMG 29860T). The whole genome has 5.3 Mb and the G+C content is 40.4 mol%.


Assuntos
Biodegradação Ambiental , Chenopodiaceae/microbiologia , Filogenia , Pseudoalteromonas/classificação , Rizosfera , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Pseudoalteromonas/isolamento & purificação , RNA Ribossômico 16S/genética , Plantas Tolerantes a Sal/microbiologia , Análise de Sequência de DNA , Espanha , Ubiquinona/química , Áreas Alagadas
3.
Int J Syst Evol Microbiol ; 70(1): 220-227, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31535966

RESUMO

Strain EAR18T was isolated as an endophyte from the roots of a halophyte plant, Arthrocnemum macrostachyum, growing in the Odiel marshes (Huelva, Spain). Cells of strain EAR18T were Gram- stain-negative, motile, non-spore-forming aerobic rods. It grew optimally on tryptic soy agar supplemented with 2.5 % NaCl (w/v), at pH 7 and 30 °C for 48 h. It tolerated NaCl from 0 to 25 % (w/v). It presented Q9 as the major quinone and C19 : 0 cyclo ω8c, summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0 as the predominant fatty acids. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and four unidentified phospholipids. The results of phylogenetic analysis based on 16S rRNA gene sequences revealed that strain EAR18T formed a well-supported clade with species Halomonas zincidurans B6T and Halomonas xinjiangensis TRM 0175T (similarities of 98.3 and 96.1 % respectively). Furthermore, digital DNA-DNA hybridization analysis resulted in values of 20.4 % with H. xinjiangensis TRM 0175T and 35.50 % with H. zincidurans B6T, and ANIb/ANIm results in values of 73.8 %/84.2 % with H. xinjiangensis TRM 0175T and 86.8 %/89.4 % with H. zincidurans B6T. Based on phylogeny and differential phenotypic properties in comparison with its closest related species, strain EAR18T is suggested to represent a new species in the genus Halomonas, for which the name Halomonas radicis sp. nov. is proposed. The type strain is EAR18T (=CECT 9077T=LMG 29859T). The whole genome was sequenced, and it had a total length of 4.6 Mbp and a G+C content of 64.9 mol%.


Assuntos
Chenopodiaceae/microbiologia , Halomonas/classificação , Filogenia , Raízes de Plantas/microbiologia , Áreas Alagadas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/isolamento & purificação , Ácidos Graxos/química , Halomonas/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Plantas Tolerantes a Sal/microbiologia , Análise de Sequência de DNA , Espanha
4.
Ecotoxicol Environ Saf ; 182: 109382, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31255867

RESUMO

Polycyclic aromatic hydrocarbons (PAH) have become a threat for the conservation of wetlands worldwide. The halophyte Spartina densiflora has shown to be potentially useful for soil phenanthrene phytoremediation, but no studies on bacteria-assisted hydrocarbon phytoremediation have been carried out with this halophyte. In this work, three phenanthrene-degrading endophytic bacteria were isolated from S. densiflora tissues and used for plant inoculation. Bacterial bioaugmentation treatments slightly improved S. densiflora growth, photosynthetic and fluorescence parameters. But endophyte-inoculated S. densiflora showed lower soil phenanthrene dissipation rates than non-inoculated S. densiflora (30% below) or even bulk soil (23% less). Our work demonstrates that endophytic inoculation on S. densiflora under greenhouse conditions with the selected PAH-degrading strains did not significantly increase inherent phenanthrene soil dissipation capacity of the halophyte. It would therefore be advisable to provide effective follow-up of bacterial colonization, survival and metabolic activity during phenanthrene soil phytoremediation.


Assuntos
Bactérias/metabolismo , Fenantrenos/análise , Poaceae/metabolismo , Plantas Tolerantes a Sal/metabolismo , Poluentes do Solo/análise , Solo/química , Biodegradação Ambiental , Endófitos/metabolismo , Fotossíntese , Poaceae/microbiologia , Plantas Tolerantes a Sal/microbiologia , Microbiologia do Solo , Áreas Alagadas
5.
Int J Syst Evol Microbiol ; 68(9): 2800-2806, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30010522

RESUMO

Two endophytic bacteria (EAod3T and EAod7T) were isolated from the aerial part of plants of Arthrocnemum macrostachyum growing in the Odiel marshes (Huelva, Spain). Phylogenetic analysis based on 16S rRNA gene sequences indicated their affiliation to the genus Kushneria. 16S rRNA gene sequences of strains EAod3T and EAod7T showed the highest similarity to Kushneria marisflavi DSM 15357T (99.0 and 97.6 %, respectively). Digital DNA-DNA hybridization studies between the draft genomes of strain EAod3T and K. marisflavi DSM 15357T corresponded to 28.5 % confirming the novel lineage of strain EAod3T in the genus Kushneria. Cells of both strains were Gram-staining-negative, aerobic and motile rods able to grow at 4-37 °C, at pH 5.0-8.0 and tolerate 0.5-25 % NaCl (w/v). They presented ubiquinone Q9 and C16 : 0, C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c as the major fatty acids. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Based on the phenotypic and phylogenetic results, strains EAod3T (=CECT 9073T=LMG 29856T) and EAod7T (=CECT 9075T=LMG 29858T) are proposed as new representatives of the genus Kushneria, and the proposed names are Kushneria phyllosphaerae sp. nov. and Kushneria endophytica sp. nov., respectively. The whole genome sequence of strain EAod3T has a total length of 3.8 Mbp and a G+C content of 59.3 mol%.


Assuntos
Chenopodiaceae/microbiologia , Halomonadaceae/classificação , Filogenia , Plantas Tolerantes a Sal/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/isolamento & purificação , Ácidos Graxos/química , Halomonadaceae/genética , Halomonadaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha , Ubiquinona/química
6.
Int J Syst Evol Microbiol ; 67(9): 3506-3512, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28857026

RESUMO

Two bacterial strains, EAod9T and SMJ21T, isolated from salt-marsh plants, were determined to be related to species of the genus Vibriofrom from 16S rRNA sequence comparisons. Their closest phylogenetic relatives are members of the Gazogenes clade, Vibrio mangrovi and Vibrio rhizosphaerae , which show the greatest similarity to the SMJ21TrRNA sequence (97.3 and 97.1 %, respectively), while EAod9T had less than 97.0 % similarity to any other species of the genus Vibrio. Both strains share the basic characteristics of the genus Vibrio, as they are Gram-stain negative, motile, slightly halophilic, facultatively anaerobic bacteria. In addition, they are oxidase-negative and unable to grow on TCBS Agar; they grow between 15 to 26 °C, pH 6 to 8 and in up to 10 % (w/v) total salinity. They produce indol, are positive in the Voges-Proskauer test and are negative for arginine dihydrolase, lysine and ornithine decarboxylases. Strain SMJ21T is aerogenic and red-pigmented, due to prodigiosin production, while strain EAod9T ferments glucose without gas and is not pigmented. The major cellular fatty acids of both novel strains were C16 : 1ω7c/C16 : 1ω6c and C16 : 0. WGSobtained for both strains, along with the other five members of the clade, allowed the determination of ANI indexes and in silico estimations of DDH values, which confirmed that the two strains represent two novel species of the genus Vibrio: Vibriopalustris sp. nov. (with EAod9T=CECT 9027T=LMG 29724T as the proposed type strain) and Vibrio spartinae sp. nov. (with SMJ21T=CECT 9026T=LMG 29723T as the proposed type strain).


Assuntos
Amaranthaceae/microbiologia , Filogenia , Poaceae/microbiologia , Vibrio/classificação , Áreas Alagadas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Pigmentação , RNA Ribossômico 16S/genética , Plantas Tolerantes a Sal/microbiologia , Análise de Sequência de DNA , Espanha , Vibrio/genética , Vibrio/isolamento & purificação
7.
Int J Syst Evol Microbiol ; 67(12): 5006-5012, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29034846

RESUMO

A novel, non-motile coccoid, Gram-positive and non-endospore forming bacterium, designated Hv14bT, was isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum. It was observed to be catalase positive and oxidase negative and able to hydrolyse starch. MK-8(H2) was identified as the dominant menaquinone and the major cellular fatty acids were anteiso-C15 : 0 and iso-C15 : 0. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol and an unidentified glycolipid. The 16S rRNA genes showed the highest 16S rRNA sequence identity with K. polaris DSM 14382T, K. rosea DSM 20447T and K. turfanensis DSM 22143T. Based on the phenotypic and molecular features and DNA-DNA hybridization data, it is concluded that strain Hv14bT is proposed to represent a novel species in the genus Kocuria, Kocuria salina sp. nov., with the type strain Hv14bT=DSM 28714T=CECT 9229T.


Assuntos
Amaranthaceae/microbiologia , Micrococcaceae/classificação , Filogenia , Rizosfera , Plantas Tolerantes a Sal/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Micrococcaceae/genética , Micrococcaceae/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha , Vitamina K 2/análogos & derivados , Vitamina K 2/química
8.
Int J Syst Evol Microbiol ; 66(4): 1844-1850, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26869238

RESUMO

A novel, salt-dependent, non-motile, rod-shaped, Gram-stain-negative and non-endospore-forming bacterium, designated strain Cs16bT, was isolated from the rhizosphere of Arthrocnemum macrostachyum, a halophytic plant at the Lebrija marshes (Seville, Spain). Strain Cs16bT was catalase- and oxidase-positive, and able to hydrolyse casein. Growth occurred from 15-40 °C, at pH 6.0-10.0 and with 1-6% (w/v) NaCl. Q-8 was identified as the major ubiquinone and the predominant cellular fatty acids were iso-C15:0, iso-C17:1cis8, iso-C11:0 3-OH, iso-C17:0, C17:0 cyclo and iso-C11:0. The polar lipids profile consisted of phosphatidylethanolamine, phosphatidylglycerol, two unknown glycophospholipids, an unknown aminoglycophospholipid, an unknown aminophospholipid and an unknown phospholipid. The 16S rRNA gene of strain Cs16bT showed 98.1%, 97.8%, and 97.6% sequence similarity with Microbulbifer maritimus CIP 108504T, Microbulbifer taiwanensis DSM 24146T and Microbulbifer gwangyangensis JCM 17800T, respectively. Based on the phenotypic and genotypic features, it is concluded that strain Cs16bT represents a novel species of the genus Microbulbifer, for which the name Microbulbifer rhizosphaerae sp. nov. is proposed. The type strain is Cs16bT (=DSM 28920T=CECT 8799T).


Assuntos
Alteromonadaceae/classificação , Chenopodiaceae/microbiologia , Filogenia , Rizosfera , Plantas Tolerantes a Sal/microbiologia , Microbiologia do Solo , Alteromonadaceae/genética , Alteromonadaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Dados de Sequência Molecular , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha , Ubiquinona/química
9.
Int J Syst Evol Microbiol ; 66(12): 5173-5180, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27618795

RESUMO

A novel, halophilic, motile, rod-shaped, Gram-staining-negative and non-endospore forming bacterium, designated Cs25T, was isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum growing in a tidal flat. Strain Cs25T was observed to be catalase-negative and oxidase-positive, and to hydrolyse hypoxanthine. Growth occurred from 15 to 40 °C, at pH 7.0-10.0 and with 1-11 % (w/v) NaCl. Q-10 was identified as the dominant ubiquinone, and the major cellular fatty acids were C18 : 1ω7c, 11-methyl C18 : 1ω7c, C20 : 1ω7c and C18 : 0. The polar lipids comprised phosphatidylmonomethylethanolamine, phosphatidylcholine, sulphoquinovosyldiacylglyceride, diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The 16S rRNA gene showed 99.19, 98.6 and 98.59 % sequence identity with Labrenzia alba DSM 18320T, L. aggregata DSM 13394T and L. marina DSM 17023T, respectively. Based on the phenotypic and molecular features and DNA-DNA hybridization data, it is concluded that strain Cs25T represents a novel species for which the name Labrenzia salinasp. nov. is proposed. The type strain is Cs25T (=DSM 29163T=CECT 8816T).


Assuntos
Chenopodiaceae/microbiologia , Filogenia , Rizosfera , Rhodobacteraceae/classificação , Plantas Tolerantes a Sal/microbiologia , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Análise de Sequência de DNA , Espanha , Ubiquinona/análogos & derivados , Ubiquinona/química
10.
Int J Syst Evol Microbiol ; 66(4): 1686-1691, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26821806

RESUMO

Two strains of Gram-stain-negative, chemo-organotrophic, aerobic and halophilic gammaproteobacteria, isolated from within the stem and roots of Spartina maritima in salt marshes from the south Atlantic Spanish coast, were found to represent a novel species in the genus Marinomonas through phylogenetic analysis of their 16S rRNA genes and phenotypic characterization. 16S rRNA gene sequences of the two strains shared < 96.2% similarity with other Marinomonas species, with Marimonas alcarazii being the most similar in sequence. They required sodium ions for growth, were able to thrive at low (4 °C) temperatures and at salinities of 12-15%, were unable to hydrolyse any tested macromolecule except casein, and grew with different monosaccharides, disaccharides, sugar alcohols, organic acids and amino acids. The novel species differed from other Marinomonas species in the use of several sole carbon sources, its temperature and salinity ranges for growth, ion requirements and cellular fatty acid composition, which included C16:0, C16:1 and C18:1 as major components and C10:0 3-OH, C12:0 and C12:0 3-OH as minor components. The name Marinomonas spartinae sp. nov. is proposed, with SMJ19T (=CECT 8886T=KCTC 42958T) as the type strain.


Assuntos
Marinomonas/classificação , Filogenia , Poaceae/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/genética , Endófitos/isolamento & purificação , Ácidos Graxos/química , Marinomonas/genética , Marinomonas/isolamento & purificação , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Raízes de Plantas/microbiologia , Caules de Planta/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Espanha , Áreas Alagadas
11.
New Phytol ; 205(1): 255-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25252248

RESUMO

The genetic regulation underlying the effect of arsenic (As(III)) on the model symbiosis Medicago-Ensifer was investigated using a combination of physiological (split-roots), microscopy and genetic (microarrays, qRT-PCR and composite plants) tools. Nodulation was very sensitive to As(III) (median inhibitory dose (ID50) = 20 µM). The effect on root elongation and on nodulation was local (nonsystemic). A battery of stress (salt, drought, heat shock, metals, etc.)-related genes were induced. Glutathione played a pivotal role in tolerance/detoxification, together with secondary metabolites ((iso)flavonoids and phenylpropanoids). However, antioxidant enzymes were not activated. Concerning the symbiotic interaction, molecular evidence suggesting that rhizobia alleviate As stress is for the first time provided. Chalcone synthase (which is involved in the first step of the legume-rhizobia cross-talk) was strongly enhanced, suggesting that the plants are biased to establish symbiotic interactions under As(III) stress. In contrast, 13 subsequent nodulation genes (involved in nodulation factors (Nod factors) perception, infection, thread initiation and progression, and nodule morphogenesis) were repressed. Overexpression of the ethylene responsive factor ERN in composite plants reduced root stress and partially restored nodulation, whereas overexpression of the early nodulin ENOD12 enhanced nodulation both in the presence and, particularly, in the absence of As, without affecting root elongation. Several transcription factors were identified, which could be additional targets for genetic engineering aiming to improve nodulation and/or alleviate root stress induced by this toxic.


Assuntos
Arsênio/toxicidade , Perfilação da Expressão Gênica , Medicago truncatula/genética , Medicago truncatula/microbiologia , Sinorhizobium/fisiologia , Simbiose/genética , Transcriptoma/genética , Arsenitos/toxicidade , Análise por Conglomerados , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/crescimento & desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nodulação/efeitos dos fármacos , Nodulação/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Simbiose/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
12.
Environ Technol ; 36(9-12): 1237-45, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25377353

RESUMO

The rhizobia-legume interaction has been proposed as an interesting and appropriate tool for rhizostabilization of soils contaminated with heavy metals. One of the main requirements to use this symbiosis is the availability of tolerant and symbiotically effective rhizobia. The aim of this work was to improve the symbiotic properties of the arsenic-resistant wild-type strain Ensifer medicae MA11 in Cu-contaminated substrates. The copAB genes from a Cu-resistant Pseudomonas fluorescens strain were expressed in E. medicae MA11 under the control of the nifH promoter. The resulting strain E. medicae MA11-copAB was able to alleviate the toxic effect of Cu in Medicago truncatula. At 300 µM Cu, root and shoot dry matter production, nitrogen content, number of nodules and photosynthetic rate were significantly reduced in plants inoculated with the wild-type strain. However, these parameters were not altered in plants inoculated with the genetically modified strain. Moreover, nodules elicited by this strain were able to accumulate twofold the Cu measured in nodules formed by the wild-type strain. In addition, the engineered E. medicae strain increased Cu accumulation in roots and decreased the content in shoots. Thus, E. medicae MA11-copAB increased the capacity of M. truncatula to rhizostabilize Cu, decreasing the translocation factor and avoiding metal entry into the food chain. The plasmid containing the nifH promoter-copAB construct could be a useful biotool for Cu rhizostabilization using legumes, since it can be transferred to different rhizobia microsymbionts of authoctonous legumes growing in Cu-contaminated soils.


Assuntos
Cobre , Medicago truncatula/fisiologia , Nodulação , Pseudomonas fluorescens/genética , Poluentes do Solo , Biodegradação Ambiental , Fixação de Nitrogênio , Plantas Geneticamente Modificadas
13.
Nat Commun ; 15(1): 5274, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902254

RESUMO

Aquaculture is a rapidly growing food production technology, but there are significant concerns related to its environmental impact and adverse social effects. We examine aquaculture outcomes in a three pillars of sustainability framework by analyzing data collected using the Aquaculture Performance Indicators. Using this approach, comparable data has been collected for 57 aquaculture systems worldwide on 88 metrics that measure social, economic, or environmental outcomes. We first examine the relationships among the three pillars of sustainability and then analyze performance in the three pillars by technology and species. The results show that economic, social, and environmental outcomes are, on average, mutually reinforced in global aquaculture systems. However, the analysis also shows significant variation in the degree of sustainability in different aquaculture systems, and weak performance of some production systems in some dimensions provides opportunity for innovative policy measures and investment to further align sustainability objectives.


Assuntos
Aquicultura , Conservação dos Recursos Naturais , Aquicultura/economia , Aquicultura/métodos , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/economia , Humanos , Meio Ambiente , Animais , Desenvolvimento Sustentável/economia , Pesqueiros/economia
14.
Plant Physiol Biochem ; 210: 108569, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552261

RESUMO

Coexistence impact of pollutants of different nature on halophytes tolerance to metal excess has not been thoroughly examined, and plant functional responses described so far do not follow a clear pattern. Using the Cu-tolerant halophyte Sarcocornia fruticosa as a model species, we conducted a greenhouse experiment to evaluate the impact of two concentration of copper (0 and 12 mM CuSO4) in combination with three nitrate levels (2, 14 and 50 mM KNO3) on plant growth, photosynthetic apparatus performance and ROS-scavenging enzymes system. The results revealed that S. fruticosa was able to grow adequately even when exposed to high concentrations of copper and nitrate. This response was linked to the plant capacity to uptake and retain a large amount of copper in its roots (up to 1500 mg kg-1 Cu), preventing its transport to aerial parts. This control of translocation was further magnified with nitrate concentration increment. Likewise, although Cu excess impaired S. fruticosa carbon assimilation capacity, the plant was able to downregulate its light-harvesting complexes function, as indicated its lowers ETR values, especially at 12 mM Cu + 50 mM NO3. This downregulation would contribute to avoid excess energy absorption and transformation. In addition, this strategy of avoiding excess energy was accompanied by the upregulation of all ROS-scavenging enzymes, a response that was further enhanced by the increase in nitrate concentration. Therefore, we conclude that the coexistence of nitrate would favor S. fruticosa tolerance to copper excess, and this effect is mediated by the combined activation of several tolerance mechanisms.


Assuntos
Cobre , Nitratos , Plantas Tolerantes a Sal , Cobre/metabolismo , Cobre/toxicidade , Nitratos/metabolismo , Nitratos/farmacologia , Plantas Tolerantes a Sal/metabolismo , Plantas Tolerantes a Sal/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Aizoaceae/metabolismo , Aizoaceae/efeitos dos fármacos , Aizoaceae/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos
15.
Plants (Basel) ; 12(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050061

RESUMO

The Earth is undergoing alterations at a high speed, which causes problems such as environmental pollution and difficulty in food production. This is where halophytes are interesting, due to their high potential in different fields, such as remediation of the environment and agriculture. For this reason, it is necessary to deepen the knowledge of the development of halophytes and how plant growth-promoting bacteria (PGP) can play a fundamental role in this process. Therefore, in this work were tested the effects of five PGP bacteria on its rhizosphere and other endophytic bacteria at different concentrations of NaCl on seed germination, plant growth (0 and 171 mM) and cutting growth (0 mM) of Arthrocaulon macrostachyum. The growth promotion in this strict halophyte is highlighted due to the presence of PGP bacteria and the fact that no salt is needed. Thus, without salt, the bacterial strains Kocuria polaris Hv16, Pseudarthrobacter psychrotolerans C58, and Rahnella aceris RTE9 enhanced the biomass production by more than 60% in both stems and roots. Furthermore, germination was encouraged by more than 30% in the presence of both R. aceris RTE9 and K. polaris Hv16 at 171 mM NaCl; the latter also had a biocontrol effect on the fungi that grew on the seeds. Additionally, for the first time in cuttings of this perennial species, the root biomass was improved thanks to the consortium of K. polaris Hv16 and P. psychrotolerans C58. Finally, this study demonstrates the potential of PGPs for optimising the development of halophytes, either for environmental or agronomic purposes.

16.
Plants (Basel) ; 12(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37447105

RESUMO

According to the EU, the global consumption of biomass, fossil fuels, metals, and minerals is expected to double by 2050, while waste will increase by 70%. In this context, the Circular Economy Action Plan (CEAP) intends to integrate development and sustainability. In this regard, tailored biofertilizers based on plant growth-promoting bacteria (PGPB) can improve plant yield with fewer inputs. In our project, an autochthonous halophyte of the Andalusian marshes, namely Mesembryanthemum crystallinum, was selected for its interest as a source of pharmaceuticals and nutraceuticals. The aim of this work was to use a culturomics approach for the isolation of specific PGPB and endophytes able to promote plant growth and, eventually, modulate the metabolome of the plant. For this purpose, a specific culture medium based on M. crystallinum biomass, called Mesem Agar (MA), was elaborated. Bacteria of three compartments (rhizosphere soil, root endophytes, and shoot endophytes) were isolated on standard tryptone soy agar (TSA) and MA in order to obtain two independent collections. A higher number of bacteria were isolated on TSA than in MA (47 vs. 37). All the bacteria were identified, and although some of them were isolated in both media (Pseudomonas, Bacillus, Priestia, Rosellomorea, etc.), either medium allowed the isolation of specific members of the M. crystallinum microbiome such as Leclercia, Curtobacterium, Pantoea, Lysinibacillus, Mesobacillus, Glutamicibacter, etc. Plant growth-promoting properties and extracellular degrading activities of all the strains were determined, and distinct patterns were found in both media. The three best bacteria of each collection were selected in order to produce two different consortia, whose effects on seed germination, root colonization, plant growth and physiology, and metabolomics were analyzed. Additionally, the results of the plant metabolome revealed a differential accumulation of several primary and secondary metabolites with pharmaceutical properties. Overall, the results demonstrated the feasibility of using "low cost media" based on plant biomass to carry out a culturomics approach in order to isolate the most suitable bacteria for biofertilizers. In this way, a circular model is established in which bacteria help plants to grow, and, in turn, a medium based on plant wastes supports bacterial growth at low prices, which is the reason why this approach can be considered within the model of "circular agronomy".

17.
Front Plant Sci ; 14: 1243509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780506

RESUMO

The use of microorganisms as a biofertilizer in strawberry has focused mainly on pathogen biocontrol, which has led to the underestimation of the potential of microorganisms for the improvement of nutritional efficiency in this crop. A study was established to investigate the impact of a plant growth-promoting rhizobacteria (PGPR) based biofertilizer integrated by self-compatible stress tolerant strains with multiple PGP properties, including atmospheric nitrogen fixation, on strawberry (Fragaria × ananassa cv. Rociera) tolerance to N deficiency in terms of growth and physiological performance. After 40 days of nitrogen fertilization shortage, inoculated plants were able to maintain root development and fertility structures (i.e. fruits and flowers) at a level similar to plants properly fertilized. In addition, inoculation lessened the negative impact of nitrogen deficiency on leaves' dry weight and relative water content. This effect was mediated by a higher root/shoot ratio, which would have allowed them to explore larger volumes of soil for the acquisition of water. Moreover, inoculation was able to buffer up to 50% of the reduction in carbon assimilation capacity, due to its positive effect on the diffusion efficiency of CO2 and the biochemical capacity of photosynthesis, as well as on the activity of photosystem II light harvesting. Furthermore, the higher leaf C/N ratio and the maintained δ15N values close to control plants were related to positive bacterial effects at the level of the plant nutritional balance. Despite these positive effects, the application of the bacterial inoculum was unable to completely counteract the restriction of fertilization, being necessary to apply a certain amount of synthetic fertilizer for the strawberry nutrition. However, according to our results, the complementary effect of this PGPR-based biofertilizer could provide a higher efficiency in environmental and economic yields on this crop.

18.
Plants (Basel) ; 12(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299063

RESUMO

Estuaries are ecologically important ecosystems particularly affected by climate change and human activities. Our interest is focused on the use of legumes to fight against the degradation of estuarine soils and loss of fertility under adverse conditions. This work was aimed to determine the potential of a nodule synthetic bacterial community (SynCom), including two Ensifer sp. and two Pseudomonas sp. strains isolated from Medicago spp. nodules, to promote M. sativa growth and nodulation in degraded estuarine soils under several abiotic stresses, including high metal contamination, salinity, drought and high temperature. These plant growth promoting (PGP) endophytes were able to maintain and even increase their PGP properties in the presence of metals. Inoculation with the SynCom in pots containing soil enhanced plant growth parameters (from 3- to 12-fold increase in dry weight), nodulation (from 1.5- to 3-fold increase in nodules number), photosynthesis and nitrogen content (up to 4-fold under metal stress) under all the controlled conditions tested. The increase in plant antioxidant enzymatic activities seems to be a common and important mechanism of plant protection induced by the SynCom under abiotic stress conditions. The SynCom increased M. sativa metals accumulation in roots, with low levels of metals translocation to shoots. Results indicated that the SynCom used in this work is an appropriate ecological and safe tool to improve Medicago growth and adaptation to degraded estuarine soils under climate change conditions.

19.
Plants (Basel) ; 12(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447093

RESUMO

Rice is one of the most important crops in the world and is considered a strategic crop for food security. Furthermore, the excessive use of chemical fertilizers to obtain high yields causes environmental problems. A sustainable alternative includes taking advantage of beneficial bacteria that promote plant growth. Here, we investigate the effect of five bacterial biofertilizers from halophytes on growth, and we investigate photosynthetic efficiency in rice plants grown under saline conditions (0 and 85 mmol L-1 NaCl) and future climate change scenarios, including increased CO2 concentrations and temperature (400/700 ppm and 25/+4 °C, respectively). Biofertilizers 1-4 increased growth by 9-64% in plants grown with and without salt in both CO2- temperature combinations, although there was no significant positive effect on the net photosynthetic rate of rice plants. In general, biofertilizer 1 was the most effective at 400 ppm CO2 and at 700 ppm CO2 +4 °C in the absence of salt. Inocula 1-5 also stimulated plant length at high CO2 levels without salt. Finally, the positive effect of biofertilization was attenuated in the plants grown under the interaction between salt and high CO2. This highlights the significance of studying biofertilization under stress interaction to establish the real potential of biofertilizers in the context of climate change conditions.

20.
Microorganisms ; 11(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37110279

RESUMO

Amid climate change, heatwave events are expected to increase in frequency and severity. As a result, yield losses in viticulture due to heatwave stress have increased over the years. As one of the most important crops in the world, an eco-friendly stress mitigation strategy is greatly needed. The present work aims to evaluate the physiological fitness improvement by two marine plant growth-promoting rhizobacteria consortia in Vitis vinifera cv. Antão Vaz under heatwave conditions. To assess the potential biophysical and biochemical thermal stress feedback amelioration, photochemical traits, pigment and fatty acid profiles, and osmotic and oxidative stress biomarkers were analysed. Bioaugmented grapevines exposed to heatwave stress presented a significantly enhanced photoprotection capability and higher thermo-stability, exhibiting a significantly lower dissipation energy flux than the non-inoculated plants. Additionally, one of the rhizobacterial consortia tested improved light-harvesting capabilities by increasing reaction centre availability and preserving photosynthetic efficiency. Rhizobacteria inoculation expressed an osmoprotectant promotion, revealed by the lower osmolyte concentration while maintaining leaf turgidity. Improved antioxidant mechanisms and membrane stability resulted in lowered lipid peroxidation product formation when compared to non-inoculated plants. Although the consortia were found to differ significantly in their effectiveness, these findings demonstrate that bioaugmentation induced significant heatwave stress tolerance and mitigation. This study revealed the promising usage of marine PGPR consortia to promote plant fitness and minimize heatwave impacts in grapevines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA