Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 195(5): 639-651, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27855271

RESUMO

RATIONALE: Acute respiratory distress syndrome (ARDS) is caused by widespread endothelial barrier disruption and uncontrolled cytokine storm. Genome-wide association studies (GWAS) have linked multiple genes to ARDS. Although mechanosensitive transcription factor Krüppel-like factor 2 (KLF2) is a major regulator of endothelial function, its role in regulating pulmonary vascular integrity in lung injury and ARDS-associated GWAS genes remains poorly understood. OBJECTIVES: To examine KLF2 expression in multiple animal models of acute lung injury and further elucidate the KLF2-mediated pathways involved in endothelial barrier disruption and cytokine storm in experimental lung injury. METHODS: Animal and in vitro models of acute lung injury were used to characterize KLF2 expression and its downstream effects responding to influenza A virus (A/WSN/33 [H1N1]), tumor necrosis factor-α, LPS, mechanical stretch/ventilation, or microvascular flow. KLF2 manipulation, permeability measurements, small GTPase activity, luciferase assays, chromatin immunoprecipitation assays, and network analyses were used to determine the mechanistic roles of KLF2 in regulating endothelial monolayer integrity, ARDS-associated GWAS genes, and lung pathophysiology. MEASUREMENTS AND MAIN RESULTS: KLF2 is significantly reduced in several animal models of acute lung injury. Microvascular endothelial KLF2 is significantly induced by capillary flow but reduced by pathologic cyclic stretch and inflammatory stimuli. KLF2 is a novel activator of small GTPase Ras-related C3 botulinum toxin substrate 1 by transcriptionally controlling Rap guanine nucleotide exchange factor 3/exchange factor directly activated by cyclic adenosine monophosphate, which maintains vascular integrity. KLF2 regulates multiple ARDS GWAS genes related to cytokine storm, oxidation, and coagulation in lung microvascular endothelium. KLF2 overexpression ameliorates LPS-induced lung injury in mice. CONCLUSIONS: Disruption of endothelial KLF2 results in dysregulation of lung microvascular homeostasis and contributes to lung pathology in ARDS.


Assuntos
Permeabilidade Capilar/fisiologia , Endotélio Vascular/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Transdução de Sinais/fisiologia , Animais , Modelos Animais de Doenças , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas rac1 de Ligação ao GTP/metabolismo
2.
Haematologica ; 99(10): 1565-73, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25150253

RESUMO

The Krüppel-like transcription factors KLF1 and KLF2 are essential for embryonic erythropoiesis. They can partially compensate for each other during mouse development, and coordinately regulate numerous erythroid genes, including the ß-like globins. Simultaneous ablation of KLF1 and KLF2 results in earlier embryonic lethality and severe anemia. In this study, we determine that this anemia is caused by a paucity of blood cells, and exacerbated by diminished ß-like globin gene expression. The anemia phenotype is dose-dependent, and, interestingly, can be ameliorated by a single copy of the KLF2, but not the KLF1 gene. The roles of KLF1 and KLF2 in maintaining normal peripheral blood cell numbers and globin mRNA amounts are erythroid cell-specific. Mechanistic studies led to the discovery that KLF2 has an essential function in erythroid precursor maintenance. KLF1 can partially compensate for KLF2 in this role, but is uniquely crucial for erythroid precursor proliferation through its regulation of G1- to S-phase cell cycle transition. A more drastic impairment of primitive erythroid colony formation from embryonic progenitor cells occurs with simultaneous loss of KLF1 and KLF2 than with loss of a single factor. KLF1 and KLF2 coordinately regulate several proliferation-associated genes, including Foxm1. Differential expression of FoxM1, in particular, correlates with the observed KLF1 and KLF2 gene dosage effects on anemia. Furthermore, KLF1 binds to the FoxM1 gene promoter in blood cells. Thus KLF1 and KLF2 coordinately regulate embryonic erythroid precursor maturation through the regulation of multiple homeostasis-associated genes, and KLF2 has a novel and essential role in this process.


Assuntos
Diferenciação Celular/genética , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Eritropoese/genética , Fatores de Transcrição Kruppel-Like/genética , Anemia/genética , Anemia/metabolismo , Animais , Ciclo Celular/genética , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Camundongos Knockout , Fenótipo
3.
Acad Med ; 99(5): 493-499, 2024 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-38166321

RESUMO

ABSTRACT: Outcome data from 6 National Institutes of Health-funded Postbaccalaureate Research Education Programs (PREPs) in the Mid-Atlantic region were combined to give a multi-institutional perspective on their scholars' characteristics and progress through biomedical research training. The institutions hosting these programs were Johns Hopkins University School of Medicine, the Medical University of South Carolina, the University of Maryland School of Medicine, the University of North Carolina at Chapel Hill, Virginia Commonwealth University, and Virginia Polytechnic Institute and State University. The authors summarize the institutional pathways, demographics, undergraduate institutions, and graduate institutions for a total of 384 PREP scholars who completed the programs by June 2021. A total of 228 (59.4%) of these PREP scholars identified as Black or African American, 116 (30.2%) as Hispanic or Latinx, and 269 (70.0%) as female. The authors found that 376 of 384 scholars (97.9%) who started PREP finished their program, 319 of 376 (84.8%) who finished PREP matriculated into PhD or MD/PhD programs, and 284 of 319 (89.0%) who matriculated have obtained their PhD or are successfully making progress toward their PhD.


Assuntos
Pesquisa Biomédica , Adulto , Feminino , Humanos , Masculino , Negro ou Afro-Americano/estatística & dados numéricos , Hispânico ou Latino/estatística & dados numéricos , Avaliação de Programas e Projetos de Saúde , Faculdades de Medicina/organização & administração , South Carolina , Estados Unidos , Universidades
4.
BMC Dev Biol ; 13: 40, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24261709

RESUMO

BACKGROUND: Krüppel-like Factor 2 (KLF2) plays an important role in vessel maturation during embryonic development. In adult mice, KLF2 regulates expression of the tight junction protein occludin, which may allow KLF2 to maintain vascular integrity. Adult tamoxifen-inducible Krüppel-like Factor 4 (KLF4) knockout mice have thickened arterial intima following vascular injury. The role of KLF4, and the possible overlapping functions of KLF2 and KLF4, in the developing vasculature are not well-studied. RESULTS: Endothelial breaks are observed in a major vessel, the primary head vein (PHV), in KLF2-/-KLF4-/- embryos at E9.5. KLF2-/-KLF4-/- embryos die by E10.5, which is earlier than either single knockout. Gross hemorrhaging of multiple vessels may be the cause of death. E9.5 KLF2-/-KLF4+/- embryos do not exhibit gross hemorrhaging, but cross-sections display disruptions of the endothelial cell layer of the PHV, and these embryos generally also die by E10.5. Electron micrographs confirm that there are gaps in the PHV endothelial layer in E9.5 KLF2-/-KLF4-/- embryos, and show that the endothelial cells are abnormally bulbous compared to KLF2-/- and wild-type (WT). The amount of endothelial Nitric Oxide Synthase (eNOS) mRNA, which encodes an endothelial regulator, is reduced by 10-fold in E9.5 KLF2-/-KLF4-/- compared to KLF2-/- and WT embryos. VEGFR2, an eNOS inducer, and occludin, a tight junction protein, gene expression are also reduced in E9.5 KLF2-/-KLF4-/- compared to KLF2-/- and WT embryos. CONCLUSIONS: This study begins to define the roles of KLF2 and KLF4 in the embryonic development of blood vessels. It indicates that the two genes interact to maintain an intact endothelial layer. KLF2 and KLF4 positively regulate the eNOS, VEGFR2 and occludin genes. Down-regulation of these genes in KLF2-/-KLF4-/- embryos may result in the observed loss of vascular integrity.


Assuntos
Vasos Sanguíneos/embriologia , Desenvolvimento Embrionário , Endotélio Vascular/embriologia , Endotélio Vascular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Animais , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Hemorragias Intracranianas/embriologia , Hemorragias Intracranianas/metabolismo , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Morfogênese , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Ocludina/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Tamoxifeno/farmacologia
5.
J Biol Chem ; 286(28): 24819-27, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21610079

RESUMO

Krüppel-like factors (KLFs) control cell differentiation and embryonic development. KLF1 (erythroid Krüppel-like factor) plays essential roles in embryonic and adult erythropoiesis. KLF2 is a positive regulator of the mouse and human embryonic ß-globin genes. KLF1 and KLF2 have highly homologous zinc finger DNA-binding domains. They have overlapping roles in embryonic erythropoiesis, as demonstrated using single and double KO mouse models. Ablation of the KLF1 or KLF2 gene causes embryonic lethality, but double KO embryos are more anemic and die sooner than either single KO. In this work, a dual human ß-globin locus transgenic and KLF knockout mouse model was used. The results demonstrate that the human ε- (embryonic) and γ-globin (fetal) genes are positively regulated by KLF1 and KLF2 in embryos. Conditional KO mouse experiments indicate that the effect of KLF2 on embryonic globin gene regulation is at least partly erythroid cell-autonomous. KLF1 and KLF2 bind directly to the promoters of the human ε- and γ-globin genes, the mouse embryonic Ey- and ßh1-globin genes, and also to the ß-globin locus control region, as demonstrated by ChIP assays with mouse embryonic blood cells. H3K9Ac and H3K4me3 marks indicate open chromatin and active transcription, respectively. These marks are diminished at the Ey-, ßh1-, ε- and γ-globin genes and locus control region in KLF1(-/-) embryos, correlating with reduced gene expression. Therefore, KLF1 and KLF2 positively regulate the embryonic and fetal ß-globin genes through direct promoter binding. KLF1 is required for normal histone modifications in the ß-globin locus in mouse embryos.


Assuntos
Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Loci Gênicos/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , Regiões Promotoras Genéticas/fisiologia , Globinas beta/biossíntese , Animais , Embrião de Mamíferos/citologia , Eritropoese/fisiologia , Humanos , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Camundongos Knockout , Ligação Proteica , Globinas beta/genética
6.
Blood Cells Mol Dis ; 47(1): 1-11, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21530336

RESUMO

KLF2 is a Krüppel-like zinc-finger transcription factor required for blood vessel, lung, T-cell and erythroid development. KLF2-/- mice die by embryonic day 14.5 (E14.5), due to hemorrhaging and heart failure. In KLF2-/- embryos, ß-like globin gene expression is reduced, and E10.5 erythroid cells exhibit abnormal morphology. In this study, other genes regulated by KLF2 were identified by comparing E9.5 KLF2-/- and wild-type (WT) yolk sac erythroid precursor cells, using laser capture microdissection and microarray assays. One hundred and ninety-six genes exhibited significant differences in expression between KLF2-/- and WT; eighty-nine of these are downregulated in KLF2-/-. Genes involved in cell migration, differentiation and development are over-represented in the KLF2-regulated gene list. The SOX2 gene, encoding a pluripotency factor, is regulated by KLF2 in both ES and embryonic erythroid cells. Previous work had identified genes with erythroid-enriched expression in the yolk sac. The erythroid-enriched genes reelin, adenylate cyclase 7, cytotoxic T lymphocyte-associated protein 2 alpha, and CD24a antigen are downregulated in KLF2-/- compared to WT and are therefore candidates for controlling primitive erythropoiesis. Each of these genes contains a putative KLF2 binding site(s) in its promoter and/or an intron. Reelin has an established role in neuronal development. Luciferase reporter assays demonstrated that KLF2 directly transactivates the reelin promoter in erythroid cells, validating this approach to identify KLF2 target genes.


Assuntos
Células Eritroides/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Saco Vitelino/embriologia , Animais , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular , Proteínas da Matriz Extracelular/genética , Feminino , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/genética , Humanos , Células K562 , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas/genética , Proteína Reelina , Serina Endopeptidases/genética , Saco Vitelino/citologia
7.
Methods Mol Biol ; 1698: 1-10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29076081

RESUMO

Many experimental models have been used to study erythropoiesis. Even prior to the advent of the genetic manipulation of animal models, erythropoiesis was examined in the mouse, chicken, sheep, goat, and rabbit, among other vertebrates. Erythroid cell lines derived from human blood cancers were also very useful, as they could be genetically manipulated more easily than whole animals. Genetic models in the mouse, zebrafish, and frog have provided a plethora of information advancing our understanding of erythropoiesis, and remain gold standards in the field for studies of hemoglobin switching, and experiments to study authentic blood cell development. Mouse and human embryonic stem (ES) and induced pluripotent (iPS) cells can be differentiated to erythroid cells in culture, though their use is somewhat limited by their propensity to express only the embryonic and fetal globin genes. Some very useful cell lines have been developed by manipulating ES or fetal liver erythroid progenitor cells from knockout mouse models. In recent years, our understanding of erythropoiesis has improved, due to the ability to knock down genes in native human hematopoietic stem and progenitor cells derived from umbilical cord blood or bone marrow, and differentiate them ex vivo to the erythroid lineage. These native cells, and cell lines derived from them, are now providing essential information about human erythropoiesis, which is complementary to that obtained from animal studies. This review provides some perspective about the cell and animal models used to study erythropoiesis over the years.


Assuntos
Eritropoese , Animais , Biomarcadores , Diferenciação Celular , Linhagem Celular Transformada , Imunoprecipitação da Cromatina , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células Eritroides/citologia , Células Eritroides/metabolismo , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hemoglobinas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunofenotipagem , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Animais
8.
Methods Mol Biol ; 1698: 259-274, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29076096

RESUMO

Human umbilical cord blood is a rich source of hematopoietic stem and progenitor cells. CD34+ cells in umbilical cord blood are more primitive than those in peripheral blood or bone marrow, and can proliferate at a high rate and differentiate into multiple cell types. In this protocol, a dependable method is described for the isolation of fetal CD34+ cells from umbilical cord blood and expanding these cells in culture. The cells can then be in vitro differentiated along an erythroid pathway, while simultaneously performing knockdown of a gene of choice. The use of lentiviral vectors that express small hairpin RNA (shRNA) is an efficient method to downregulate genes. Flow cytometric analyses are used to enrich for erythroid cells. Using these methods, one can generate in vitro differentiated cells to use for quantitative reverse transcriptase PCR and other purposes.


Assuntos
Diferenciação Celular/genética , Sangue Fetal/citologia , Técnicas de Silenciamento de Genes , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Lentivirus/genética , Antígenos CD34/metabolismo , Técnicas de Cultura de Células , Separação Celular , Células Eritroides/citologia , Células Eritroides/metabolismo , Citometria de Fluxo , Expressão Gênica , Células HEK293 , Humanos , Transfecção
9.
PLoS One ; 11(2): e0146802, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26840243

RESUMO

In human adult erythroid cells, lower than normal levels of Krüppel-like transcription factor 1 (KLF1) are generally associated with decreased adult ß- and increased fetal γ-globin gene expression. KLF1 also regulates BCL11A, a known repressor of adult γ-globin expression. In seeming contrast to the findings in adult cells, lower amounts of KLF1 correlate with both reduced embryonic and reduced fetal ß-like globin mRNA in mouse embryonic erythroid cells. The role of KLF1 in primary human fetal erythroid cells, which express both γ- and ß-globin mRNA, is less well understood. Therefore, we studied the role of KLF1 in ex vivo differentiated CD34+ umbilical cord blood cells (UCB erythroblasts), representing the fetal milieu. In UCB erythroblasts, KLF1 binds to the ß-globin locus control region (LCR), and the ß-globin promoter. There is very little KLF1 binding detectable at the γ-globin promoter. Correspondingly, when cultured fetal UCB erythroblasts are subjected to lentiviral KLF1 knockdown, the active histone mark H3K4me3 and RNA pol II recruitment are diminished at the ß- but not the γ-globin gene. The amount of KLF1 expression strongly positively correlates with ß-globin mRNA and weakly positively correlates with BCL11A mRNA. With modest KLF1 knockdown, mimicking haploinsufficiency, γ-globin mRNA is increased in UCB erythroblasts, as is common in adult cells. However, a threshold level of KLF1 is evidently required, or there is no absolute increase in γ-globin mRNA in UCB erythroblasts. Therefore, the role of KLF1 in γ-globin regulation in fetal erythroblasts is complex, with both positive and negative facets. Furthermore, in UCB erythroblasts, diminished BCL11A is not sufficient to induce γ-globin in the absence of KLF1. These findings have implications for the manipulation of BCL11A and/or KLF1 to induce γ-globin for therapy of the ß-hemoglobinopathies.


Assuntos
Eritroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição Kruppel-Like/fisiologia , Globinas beta/genética , gama-Globinas/genética , Proteínas de Transporte/fisiologia , Sangue Fetal , Técnicas de Silenciamento de Genes , Humanos , Switching de Imunoglobulina/genética , Proteínas Nucleares/fisiologia , Proteínas Repressoras
10.
Methods Mol Biol ; 1092: 43-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24318813

RESUMO

In order to compare the global gene expression profiles of different embryonic cell types, it is first necessary to isolate the specific cells of interest. The purpose of this chapter is to provide a step-by-step protocol to perform laser capture microdissection (LCM) on embryo samples and obtain sufficient amounts of high-quality RNA for microarray hybridizations. Using the LCM/microarray strategy on mouse embryo samples has some challenges, because the cells of interest are available in limited quantities. The first step in the protocol is to obtain embryonic tissue, and immediately cryoprotect and freeze it in a cryomold containing Optimal Cutting Temperature freezing media (Sakura Finetek), using a dry ice-isopentane bath. The tissue is then cryosectioned, and the microscope slides are processed to fix, stain, and dehydrate the cells. LCM is employed to isolate specific cell types from the slides, identified under the microscope by virtue of their morphology. Detailed protocols are provided for using the currently available ArcturusXT LCM instrument and CapSure(®) LCM Caps, to which the selected cells adhere upon laser capture. To maintain RNA integrity, upon removing a slide from the final processing step, or attaching the first cells on the LCM cap, LCM is completed within 20 min. The cells are then immediately recovered from the LCM cap using a denaturing solution that stabilizes RNA integrity. RNA is prepared using standard methods, modified for working with small samples. To ensure the validity of the microarray data, the quality of the RNA is assessed using the Agilent bioanalyzer. Only RNA that is of sufficient integrity and quantity is used to perform microarray assays. This chapter provides guidance regarding troubleshooting and optimization to obtain high-quality RNA from cells of limited availability, obtained from embryo samples by LCM.


Assuntos
Perfilação da Expressão Gênica , Microdissecção e Captura a Laser/métodos , RNA/biossíntese , Animais , Embrião de Mamíferos , Camundongos , Biologia Molecular/métodos , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA/isolamento & purificação
11.
PLoS One ; 8(2): e54891, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23457456

RESUMO

Krüppel-like factor 2 (KLF2) is expressed in endothelial cells in the developing heart, particularly in areas of high shear stress, such as the atrioventricular (AV) canal. KLF2 ablation leads to myocardial thinning, high output cardiac failure and death by mouse embryonic day 14.5 (E14.5) in a mixed genetic background. This work identifies an earlier and more fundamental role for KLF2 in mouse cardiac development in FVB/N mice. FVB/N KLF2-/- embryos die earlier, by E11.5. E9.5 FVB/N KLF2-/- hearts have multiple, disorganized cell layers lining the AV cushions, the primordia of the AV valves, rather than the normal single layer. By E10.5, traditional and endothelial-specific FVB/N KLF2-/- AV cushions are hypocellular, suggesting that the cells accumulating at the AV canal have a defect in endothelial to mesenchymal transformation (EMT). E10.5 FVB/N KLF2-/- hearts have reduced glycosaminoglycans in the cardiac jelly, correlating with the reduced EMT. However, the number of mesenchymal cells migrating from FVB/N KLF2-/- AV explants into a collagen matrix is reduced considerably compared to wild-type, suggesting that the EMT defect is not due solely to abnormal cardiac jelly. Echocardiography of E10.5 FVB/N KLF2-/- embryos indicates that they have abnormal heart function compared to wild-type. E10.5 C57BL/6 KLF2-/- hearts have largely normal AV cushions. However, E10.5 FVB/N and C57BL/6 KLF2-/- embryos have a delay in the formation of the atrial septum that is not observed in a defined mixed background. KLF2 ablation results in reduced Sox9, UDP-glucose dehydrogenase (Ugdh), Gata4 and Tbx5 mRNA in FVB/N AV canals. KLF2 binds to the Gata4, Tbx5 and Ugdh promoters in chromatin immunoprecipitation assays, indicating that KLF2 could directly regulate these genes. In conclusion, KLF2-/- heart phenotypes are genetic background-dependent. KLF2 plays a role in EMT through its regulation of important cardiovascular genes.


Assuntos
Cardiopatias Congênitas/genética , Coração/embriologia , Fatores de Transcrição Kruppel-Like/genética , Camundongos/embriologia , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Embrião de Mamíferos/fisiopatologia , Feminino , Fator de Transcrição GATA4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Glicosaminoglicanos/análise , Coração/fisiopatologia , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/fisiopatologia , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Camundongos/anormalidades , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/patologia , Proteínas com Domínio T/metabolismo
12.
Mol Cell Biol ; 32(13): 2628-44, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22566683

RESUMO

The Krüppel-like factor 1 (KLF1) and KLF2 positively regulate embryonic ß-globin expression and have additional overlapping roles in embryonic (primitive) erythropoiesis. KLF1(-/-) KLF2(-/-) double knockout mice are anemic at embryonic day 10.5 (E10.5) and die by E11.5, in contrast to single knockouts. To investigate the combined roles of KLF1 and KLF2 in primitive erythropoiesis, expression profiling of E9.5 erythroid cells was performed. A limited number of genes had a significantly decreasing trend of expression in wild-type, KLF1(-/-), and KLF1(-/-) KLF2(-/-) mice. Among these, the gene for Myc (c-Myc) emerged as a central node in the most significant gene network. The expression of the Myc gene is synergistically regulated by KLF1 and KLF2, and both factors bind the Myc promoters. To characterize the role of Myc in primitive erythropoiesis, ablation was performed specifically in mouse embryonic proerythroblast cells. After E9.5, these embryos exhibit an arrest in the normal expansion of circulating red cells and develop anemia, analogous to KLF1(-/-) KLF2(-/-) embryos. In the absence of Myc, circulating erythroid cells do not show the normal increase in α- and ß-like globin gene expression but, interestingly, have accelerated erythroid cell maturation between E9.5 and E11.5. This study reveals a novel regulatory network by which KLF1 and KLF2 regulate Myc to control the primitive erythropoietic program.


Assuntos
Eritropoese/genética , Redes Reguladoras de Genes , Genes myc , Fatores de Transcrição Kruppel-Like/genética , Animais , Sequência de Bases , Primers do DNA/genética , Eritroblastos/citologia , Eritroblastos/metabolismo , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição Kruppel-Like/deficiência , Masculino , Camundongos , Camundongos Knockout , Gravidez , Regiões Promotoras Genéticas , RNA Mensageiro/genética , alfa-Globinas/genética , Globinas beta/genética
13.
Gene Expr Patterns ; 10(7-8): 361-7, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20736086

RESUMO

Expression of astrocyte elevated gene-1 (AEG-1) is elevated in multiple human cancers including brain tumors, neuroblastomas, melanomas, breast cancers, non-small cell lung cancers, liver cancers, prostate cancers, and esophageal cancers. This gene plays crucial roles in tumor cell growth, invasion, angiogenesis and progression to metastasis. In addition, over-expression of AEG-1 protects primary and transformed cells from apoptosis-inducing signals by activating PI3K-Akt signaling pathways. These results suggest that AEG-1 is intimately involved in tumorigenesis and may serve as a potential therapeutic target for various human cancers. However, the normal physiological functions of AEG-1 require clarification. We presently analyzed the expression pattern of AEG-1 during mouse development. AEG-1 was expressed in mid-to-hindbrain, fronto-nasal processes, limbs, and pharyngeal arches in the early developmental period from E8.5 to E9.5. In addition, at stages of E12.5-E18.5 AEG-1 was localized in the brain, and olfactory and skeletal systems suggesting a role in neurogenesis, as well as in skin, including hair follicles, and in the liver, which are organ sites in which AEG-1 has been implicated in tumor development and progression. AEG-1 co-localized with Ki-67, indicating a role in cell proliferation, as previously revealed in tumorigenesis. Taken together, these results suggest that AEG-1 may play a prominent role during normal mouse development in the context of cell proliferation as well as differentiation, and that temporal regulation of AEG-1 expression may be required during specific stages and in specific tissues during development.


Assuntos
Diferenciação Celular , Proliferação de Células , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Neurogênese/genética , Animais , Astrócitos/metabolismo , Encéfalo/embriologia , Encéfalo/metabolismo , Transformação Celular Neoplásica , Imunofluorescência , Perfilação da Expressão Gênica , Folículo Piloso/embriologia , Folículo Piloso/metabolismo , Antígeno Ki-67/análise , Antígeno Ki-67/genética , Fígado/embriologia , Fígado/metabolismo , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Reação em Cadeia da Polimerase , Proteínas de Ligação a RNA , Transdução de Sinais , Pele/embriologia , Pele/metabolismo , Medula Espinal/embriologia , Medula Espinal/metabolismo
14.
Exp Hematol ; 37(2): 151-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19100675

RESUMO

OBJECTIVE: A proapoptotic BH3-only protein BIM (BCL-2 interacting mediator of cell death) can link cytokine receptor signaling with the apoptotic machinery in hematopoietic cells. We investigated here the role of BIM in erythropoietin (EPO)-mediated survival in erythroid cells. MATERIALS AND METHODS: We downregulated BIM in EPO-dependent HCD57 erythroid cells with short hairpin RNA (shRNA), and used real-time polymerase chain reaction, Western blots, and flow cytometry to characterize BIM expression and apoptosis. Hematologic analyses of BIM-deficient (Bim(-/-)) mice were conducted. RESULTS: BIM expression increases in primary murine erythroid cells and HCD57 cells deprived of EPO. Whereas Bim mRNA increased less than twofold, BIM protein increased more than 10-fold after EPO withdrawal, suggesting posttranscriptional regulation of BIM. EPO treatment resulted in rapid phosphorylation of BIM at Serine 65 and phosphorylation correlated with degradation of BIM. Inhibition of extracellular signal-regulated kinase (ERK) by a MEK/ERK inhibitor, U0126, blocked both phosphorylation and degradation of BIM, resulting in apoptosis. Treatment with a proteasome inhibitor, MG-132, also blocked degradation of phosphorylated BIM. Downregulation of BIM with the shRNA resulted in HCD57 cells more resistant to apoptosis induced by either EPO withdrawal or ERK inhibition. Although we observed no significant changes in the number of erythrocytes or reticulocytes in the circulation of Bim(-/-) mice, erythroid progenitors from bone marrow in Bim(-/-) mice were reduced in number and more resistant to apoptosis induced by U0126 MEK/ERK inhibitor. CONCLUSION: EPO protects erythroid cells from apoptosis in part through ERK-mediated phosphorylation followed by proteasomal degradation of BIM.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/fisiologia , Células Eritroides/metabolismo , Eritropoetina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteína 11 Semelhante a Bcl-2 , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Células Eritroides/citologia , Eritropoetina/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteínas Proto-Oncogênicas/genética
15.
Dev Dyn ; 237(2): 436-46, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18213587

RESUMO

Little is known about the genes that control the embryonic erythroid program. Laser capture microdissection was used to isolate primitive erythroid precursors and epithelial cells from frozen sections of the embryonic day 9.5 yolk sac. The RNA samples were amplified and labeled for hybridization to Affymetrix GeneChip Mouse Genome 430A 2.0 arrays. Ninety-one genes are expressed significantly higher in erythroid than in epithelial cells. Ingenuity pathway analysis indicates that many of these erythroid-enriched genes cluster in highly significant biological networks. One of these networks contains RBTN2/LMO2, SCL/TAL1, and EKLF/KLF1, three of the very few genes required for primitive erythropoiesis. Quantitative real-time polymerase chain reaction was used to verify that platelet factor 4, reelin, thrombospondin-1, and muscleblind-like 1 mRNA is erythroid-enriched. These genes have established roles in development or differentiation in other systems, and are, therefore, good candidates for regulating primitive erythropoiesis. These results provide a catalog of genes expressed during primitive erythropoiesis.


Assuntos
Células Eritroides/metabolismo , Expressão Gênica , Redes Reguladoras de Genes/genética , Saco Vitelino/metabolismo , Animais , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Camundongos , Microdissecção , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos/genética , Proteína Reelina , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saco Vitelino/embriologia
16.
Blood ; 110(9): 3417-25, 2007 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17675555

RESUMO

The Krüppel-like C2/H2 zinc finger transcription factors (KLFs) control development and differentiation. Erythroid Krüppel-like factor (EKLF or KLF1) regulates adult beta-globin gene expression and is necessary for normal definitive erythropoiesis. KLF2 is required for normal embryonic Ey- and betah1-, but not adult betaglobin, gene expression in mice. Both EKLF and KLF2 play roles in primitive erythroid cell development. To investigate potential interactions between these genes, EKLF/KLF2 double-mutant embryos were analyzed. EKLF(-/-)KLF2(-/-) mice appear anemic at embryonic day 10.5 (E10.5) and die before E11.5, whereas single-knockout EKLF(-/-) or KLF2(-/-) embryos are grossly normal at E10.5 and die later than EKLF(-/-)KLF2(-/-) embryos. At E10.5, Ey- and betah1-globin mRNA is greatly reduced in EKLF(-/-)KLF2(-/-), compared with EKLF(-/-) or KLF2(-/-) embryos, consistent with the observed anemia. Light and electron microscopic analyses of E9.5 EKLF(-/-)KLF2(-/-) yolk sacs, and cytospins, indicate that erythroid and endothelial cells are morphologically more abnormal than in either single knockout. EKLF(-/-)KLF2(-/-) erythroid cells are markedly irregularly shaped, suggesting membrane abnormalities. EKLF and KLF2 may have coordinate roles in a common progenitor to erythroid and endothelial cells. The data indicate that EKLF and KLF2 have redundant functions in embryonic beta-like globin gene expression, primitive erythropoiesis, and endothelial development.


Assuntos
Eritropoese/genética , Sangue Fetal/citologia , Globinas/genética , Fatores de Transcrição Kruppel-Like/fisiologia , Anemia/embriologia , Anemia/genética , Anemia/patologia , Animais , Embrião de Mamíferos , Eritrócitos/patologia , Feminino , Sangue Fetal/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Globinas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Gravidez , RNA Mensageiro/metabolismo , Saco Vitelino/patologia
17.
Proc Natl Acad Sci U S A ; 103(17): 6617-22, 2006 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-16608912

RESUMO

The genes of the vertebrate beta-globin locus undergo a switch in expression during erythroid development whereby embryonic/fetal genes of the cluster are sequentially silenced and adult genes are activated. We describe here a role for DNA methylation and MBD2 in the silencing of the human fetal gamma-globin gene. The gamma-globin gene is reactivated upon treatment with the DNA methyltransferase inhibitor 5-azacytidine in the context of a mouse containing the entire human beta-globin locus as a yeast artificial chromosome (betaYAC) transgene. To elucidate the mechanism through which DNA methylation represses the gamma-globin gene in adult erythroid cells, betaYAC/MBD2-/- mice were generated by breeding betaYAC mice with MBD2-/- mice. Adult betaYAC/MBD2-/- mice continue to express the gamma-globin gene at a level commensurate with 5-azacytidine treatment, 10- to 20-fold over that observed with 1-acetyl-2-phenylhydrazine treatment alone. In addition, the level of gamma-globin expression is consistently higher in MBD2-/- mice in 14.5- and 16.5-days postcoitus fetal liver erythroblasts suggesting a role for MBD2 in embryonic/fetal erythroid development. DNA methylation levels are modestly decreased in MBD2-/- mice. MBD2 does not bind to the gamma-globin promoter region to maintain gamma-globin silencing. Finally, treatment of MBD2-null mice with 5-azacytidine induces only a small, nonadditive induction of gamma-globin mRNA, signifying that DNA methylation acts primarily through MBD2 to maintain gamma-globin suppression in adult erythroid cells.


Assuntos
Cromossomos Artificiais de Levedura/genética , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Globinas/genética , Animais , Azacitidina/farmacologia , Sítios de Ligação/genética , Metilação de DNA , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Epigênese Genética , Eritroblastos/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Gravidez , Regiões Promotoras Genéticas
18.
Dev Dyn ; 235(7): 1933-40, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16680725

RESUMO

EKLF/KLF1 was the first of the Krüppel-like factors (KLFs) to be identified in mammals and plays an important role in primitive and definitive erythropoiesis. Here, we identify and characterize EKLF in the chicken (cEKLF). The predicted amino acid sequence of the zinc finger region of cEKLF is at least 87.7% similar to mammalian EKLF proteins and is 98.8% and 95% similar to the EKLF orthologues in Xenopus and zebrafish, respectively. During early embryonic development, cEKLF expression is seen in the posterior primitive streak, which gives rise to hematopoietic cells, and then in the blood islands and in circulating blood cells. cEKLF mRNA is expressed in blood cells but not in brain later in chicken embryonic development. cEKLF mRNA is increased in definitive compared with primitive erythropoiesis. The conserved sequence and expression pattern of cEKLF suggests that its function is similar to its orthologues in mammals, Xenopus, and zebrafish.


Assuntos
Fatores de Transcrição Kruppel-Like/biossíntese , Sequência de Aminoácidos , Animais , Sequência de Bases , Células Sanguíneas/metabolismo , Encéfalo/embriologia , Encéfalo/metabolismo , Embrião de Galinha , Sequência Conservada , Hematopoese , Fatores de Transcrição Kruppel-Like/genética , Dados de Sequência Molecular
19.
Blood Cells Mol Dis ; 37(1): 27-32, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16697667

RESUMO

Erythropoietic tissues are complex, containing both erythroid and other cells. The embryonic yolk sac in particular contains primitive erythroid cells in low abundance. Laser capture microdissection (LCM) was performed to isolate erythroid cells, and epithelial cells, from mouse embryonic day 10 (E10) yolk sac. Quantitative RT-PCR was performed to confirm that enriched cell populations were obtained. epsilony- and betaH1-globin mRNAs were enriched in the erythroid compared to the epithelial fraction, and villin mRNA was enriched in the epithelial compared to the erythroid fraction. RNA isolated from the microdissected erythroid cells was of high quality as indicated by capillary electrophoresis. The RNA from the LCM erythroid fraction was linearly amplified with T7 RNA polymerase and hybridized to a Mouse 430A 2.0 Affymetrix array. Forty-eight percent of genes were present in the microarray assays, including low abundance transcripts such as erythroid transcription factors and enzymes involved in heme synthesis. With the LCM/microarray strategy, it will be possible to identify genes that are differentially regulated in native primitive and definitive erythroid cells.


Assuntos
Separação Celular/métodos , Células Precursoras Eritroides/citologia , Perfilação da Expressão Gênica , Microdissecção/métodos , Saco Vitelino/citologia , Animais , Embrião de Mamíferos/citologia , Células Epiteliais/citologia , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA