Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(12): 2308-2336, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760574

RESUMO

How cells coordinate morphogenetic cues and fate specification during development remains a fundamental question in organogenesis. The mammary gland arises from multipotent stem cells (MaSCs), which are progressively replaced by unipotent progenitors by birth. However, the lack of specific markers for early fate specification has prevented the delineation of the features and spatial localization of MaSC-derived lineage-committed progenitors. Here, using single-cell RNA sequencing from E13.5 to birth, we produced an atlas of matched mouse mammary epithelium and mesenchyme and reconstructed the differentiation trajectories of MaSCs toward basal and luminal fate. We show that murine MaSCs exhibit lineage commitment just prior to the first sprouting events of mammary branching morphogenesis at E15.5. We identify early molecular markers for committed and multipotent MaSCs and define their spatial distribution within the developing tissue. Furthermore, we show that the mammary embryonic mesenchyme is composed of two spatially restricted cell populations, and that dermal mesenchyme-produced FGF10 is essential for embryonic mammary branching morphogenesis. Altogether, our data elucidate the spatiotemporal signals underlying lineage specification of multipotent MaSCs, and uncover the signals from mesenchymal cells that guide mammary branching morphogenesis.


Assuntos
Linhagem da Célula , Células Epiteliais , Glândulas Mamárias Animais , Células-Tronco Mesenquimais , Animais , Camundongos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/metabolismo , Feminino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Diferenciação Celular , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/metabolismo , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fator 10 de Crescimento de Fibroblastos/genética , Morfogênese , Análise de Célula Única , Mesoderma/citologia , Mesoderma/metabolismo , Mesoderma/embriologia
2.
Development ; 149(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35420674

RESUMO

Post-lactational mammary gland regression encompasses extensive programmed cell death and removal of milk-producing epithelial cells, breakdown of extracellular matrix components and redifferentiation of stromal adipocytes. This highly regulated involution process is associated with a transient increased risk of breast cancer in women. Using a syngeneic tumour model, we show that tumour growth is significantly altered depending on the stage of involution at which tumour cells are implanted. Tumour cells injected at day 3 involution grew faster than those in nulliparous mice, whereas tumours initiated at day 6 involution grew significantly slower. These differences in tumour progression correlate with distinct changes in innate immune cells, in particular among F4/80-expressing macrophages and among TCRδ+ unconventional T cells. Breast cancer post-pregnancy risk is exacerbated in older first-time mothers and, in our model, initial tumour growth is moderately faster in aged mice compared with young mice. Our results have implications for breast cancer risk and the use of anti-inflammatory therapeutics for postpartum breast cancers.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Humanas , Idoso , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Lactação , Glândulas Mamárias Animais , Camundongos , Período Pós-Parto/fisiologia , Gravidez
3.
J Mammary Gland Biol Neoplasia ; 29(1): 11, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38761238

RESUMO

The transcription factor STAT3 is activated by multiple cytokines and other extrinsic factors. It plays a key role in immune and inflammatory responses and, when dysregulated, in tumourigenesis. STAT3 is also an indispensable mediator of the cell death process that occurs during post-lactational regression of the mammary gland, one of the most dramatic examples of physiological cell death in adult mammals. During this involution of the gland, STAT3 powerfully enhances the lysosomal system to efficiently remove superfluous milk-producing mammary epithelial cells via a lysosomal-mediated programmed cell death pathway. The lysosome is a membrane-enclosed  cytoplasmic organelle that digests and recycles cellular waste, with an important role as a signalling centre that monitors cellular metabolism. Here, we describe key strategies for investigating the role of STAT3 in regulating lysosomal function using a mammary epithelial cell culture model system. These include protocols for lysosome enrichment and enzyme activity assays, in addition to microscopic analyses of the vesicular compartment in cell lines. Collectively, these approaches provide the tools to investigate multiple aspects of lysosome biogenesis and function, and to define both direct and indirect roles for STAT3.


Assuntos
Células Epiteliais , Lisossomos , Glândulas Mamárias Animais , Fator de Transcrição STAT3 , Lisossomos/metabolismo , Fator de Transcrição STAT3/metabolismo , Feminino , Animais , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/citologia , Humanos , Glândulas Mamárias Humanas/metabolismo , Glândulas Mamárias Humanas/citologia , Camundongos , Transdução de Sinais
4.
Proc Natl Acad Sci U S A ; 117(43): 26822-26832, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33033227

RESUMO

The mammary epithelium is indispensable for the continued survival of more than 5,000 mammalian species. For some, the volume of milk ejected in a single day exceeds their entire blood volume. Here, we unveil the spatiotemporal properties of physiological signals that orchestrate the ejection of milk from alveolar units and its passage along the mammary ductal network. Using quantitative, multidimensional imaging of mammary cell ensembles from GCaMP6 transgenic mice, we reveal how stimulus evoked Ca2+ oscillations couple to contractions in basal epithelial cells. Moreover, we show that Ca2+-dependent contractions generate the requisite force to physically deform the innermost layer of luminal cells, compelling them to discharge the fluid that they produced and housed. Through the collective action of thousands of these biological positive-displacement pumps, each linked to a contractile ductal network, milk begins its passage toward the dependent neonate, seconds after the command.


Assuntos
Sinalização do Cálcio , Glândulas Mamárias Animais/fisiologia , Ejeção Láctea , Animais , Células Epiteliais/fisiologia , Humanos , Microscopia Intravital , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/diagnóstico por imagem , Glândulas Mamárias Humanas/metabolismo , Camundongos , Camundongos Transgênicos , Cadeias Leves de Miosina/metabolismo
5.
Development ; 145(14)2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30045917

RESUMO

Mammary gland development occurs over multiple phases, beginning in the mammalian embryo and continuing throughout reproductive life. The remarkable morphogenetic capacity of the mammary gland at each stage of development is attributed to the activities of distinct populations of mammary stem cells (MaSCs) and progenitor cells. However, the relationship between embryonic and adult MaSCs, and their fate during different waves of mammary gland morphogenesis, remains unclear. By employing a neutral, low-density genetic labelling strategy, we characterised the contribution of proliferative stem/progenitor cells to embryonic, pubertal and reproductive mammary gland development. Our findings further support a model of lineage restriction of MaSCs in the postnatal mammary gland, and highlight extensive redundancy and heterogeneity within the adult stem/progenitor cell pool. Furthermore, our data suggest extensive multiplicity in their foetal precursors that give rise to the primordial mammary epithelium before birth. In addition, using a single-cell labelling approach, we revealed the extraordinary capacity of a single embryonic MaSC to contribute to postnatal ductal development. Together, these findings provide tantalising new insights into the disparate and stage-specific contribution of distinct stem/progenitor cells to mammary gland development.


Assuntos
Células-Tronco Adultas/citologia , Linhagem da Célula , Glândulas Mamárias Animais/citologia , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Adultas/metabolismo , Animais , Proliferação de Células , Desenvolvimento Embrionário , Camundongos , Morfogênese , Células-Tronco Embrionárias Murinas/metabolismo , Maturidade Sexual , Análise de Célula Única
6.
J Biol Chem ; 293(12): 4244-4261, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29343516

RESUMO

Lysosome function is essential in cellular homeostasis. In addition to its recycling role, the lysosome has recently been recognized as a cellular signaling hub. We have shown in mammary epithelial cells, both in vivo and in vitro, that signal transducer and activator of transcription 3 (Stat3) modulates lysosome biogenesis and can promote the release of lysosomal proteases that culminates in cell death. To further investigate the impact of Stat3 on lysosomal function, we conducted a proteomic screen of changes in lysosomal membrane protein components induced by Stat3 using an iron nanoparticle enrichment strategy. Our results show that Stat3 activation not only elevates the levels of known membrane proteins but results in the appearance of unexpected factors, including cell surface proteins such as annexins and flotillins. These data suggest that Stat3 may coordinately regulate endocytosis, intracellular trafficking, and lysosome biogenesis to drive lysosome-mediated cell death in mammary epithelial cells. The methodologies described in this study also provide significant improvements to current techniques used for the purification and analysis of the lysosomal proteome.


Assuntos
Células Epiteliais/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteoma/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Morte Celular , Células Cultivadas , Células Epiteliais/citologia , Feminino , Glândulas Mamárias Animais/citologia , Proteômica , Transdução de Sinais
7.
Breast Cancer Res ; 18(1): 115, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27887657

RESUMO

The ENBDC workshop "Methods in Mammary Gland Development and Cancer" is an established international forum to showcase the latest technical advances in the field. The eighth meeting focused on emerging concepts and technologies for studying normal and neoplastic breast development.


Assuntos
Neoplasias da Mama/etiologia , Neoplasias da Mama/patologia , Mama/crescimento & desenvolvimento , Mama/patologia , Animais , Neoplasias da Mama/diagnóstico , Detecção Precoce de Câncer/métodos , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Biologia de Sistemas/métodos
8.
Breast Cancer Res ; 18(1): 127, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27964754

RESUMO

BACKGROUND: High-resolution 3D imaging of intact tissue facilitates cellular and subcellular analyses of complex structures within their native environment. However, difficulties associated with immunolabelling and imaging fluorescent proteins deep within whole organs have restricted their applications to thin sections or processed tissue preparations, precluding comprehensive and rapid 3D visualisation. Several tissue clearing methods have been established to circumvent issues associated with depth of imaging in opaque specimens. The application of these techniques to study the elaborate architecture of the mouse mammary gland has yet to be investigated. METHODS: Multiple tissue clearing methods were applied to intact virgin and lactating mammary glands, namely 3D imaging of solvent-cleared organs, see deep brain (seeDB), clear unobstructed brain imaging cocktails (CUBIC) and passive clarity technique. Using confocal, two-photon and light sheet microscopy, their compatibility with whole-mount immunofluorescent labelling and 3D imaging of mammary tissue was examined. In addition, their suitability for the analysis of mouse mammary tumours was also assessed. RESULTS: Varying degrees of optical transparency, tissue preservation and fluorescent signal conservation were observed between the different clearing methods. SeeDB and CUBIC protocols were considered superior for volumetric fluorescence imaging and whole-mount histochemical staining, respectively. Techniques were compatible with 3D imaging on a variety of platforms, enabling visualisation of mammary ductal and lobulo-alveolar structures at vastly improved depths in cleared tissue. CONCLUSIONS: The utility of whole-organ tissue clearing protocols was assessed in the mouse mammary gland. Most methods utilised affordable and widely available reagents, and were compatible with standard confocal microscopy. These techniques enable high-resolution, 3D imaging and phenotyping of mammary cells and tumours in situ, and will significantly enhance our understanding of both normal and pathological mammary gland development.


Assuntos
Imageamento Tridimensional , Glândulas Mamárias Animais/diagnóstico por imagem , Neoplasias Mamárias Animais/diagnóstico por imagem , Neoplasias Mamárias Animais/patologia , Animais , Feminino , Imunofluorescência , Imageamento Tridimensional/métodos , Camundongos , Microscopia Confocal , Imagem Óptica/métodos
9.
Nat Commun ; 15(1): 4021, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740751

RESUMO

The unexplained protective effect of childhood adiposity on breast cancer risk may be mediated via mammographic density (MD). Here, we investigate a complex relationship between adiposity in childhood and adulthood, puberty onset, MD phenotypes (dense area (DA), non-dense area (NDA), percent density (PD)), and their effects on breast cancer. We use Mendelian randomization (MR) and multivariable MR to estimate the total and direct effects of adiposity and age at menarche on MD phenotypes. Childhood adiposity has a decreasing effect on DA, while adulthood adiposity increases NDA. Later menarche increases DA/PD, but when accounting for childhood adiposity, this effect is attenuated. Next, we examine the effect of MD on breast cancer risk. DA/PD have a risk-increasing effect on breast cancer across all subtypes. The MD SNPs estimates are heterogeneous, and additional analyses suggest that different mechanisms may be linking MD and breast cancer. Finally, we evaluate the role of MD in the protective effect of childhood adiposity on breast cancer. Mediation MR analysis shows that 56% (95% CIs [32%-79%]) of this effect is mediated via DA. Our finding suggests that higher childhood adiposity decreases mammographic DA, subsequently reducing breast cancer risk. Understanding this mechanism is important for identifying potential intervention targets.


Assuntos
Adiposidade , Densidade da Mama , Neoplasias da Mama , Mamografia , Menarca , Análise da Randomização Mendeliana , Humanos , Neoplasias da Mama/genética , Neoplasias da Mama/diagnóstico por imagem , Feminino , Adiposidade/genética , Fatores de Risco , Criança , Tamanho Corporal , Adulto , Polimorfismo de Nucleotídeo Único , Pessoa de Meia-Idade
10.
medRxiv ; 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37693539

RESUMO

Observational studies suggest that mammographic density (MD) may have a role in the unexplained protective effect of childhood adiposity on breast cancer risk. Here, we investigated a complex and interlinked relationship between puberty onset, adiposity, MD, and their effects on breast cancer using Mendelian randomization (MR). We estimated the effects of childhood and adulthood adiposity, and age at menarche on MD phenotypes (dense area (DA), non-dense area (NDA), percent density (PD)) using MR and multivariable MR (MVMR), allowing us to disentangle their total and direct effects. Next, we examined the effect of MD on breast cancer risk, including risk of molecular subtypes, and accounting for genetic pleiotropy. Finally, we used MVMR to evaluate whether the protective effect of childhood adiposity on breast cancer was mediated by MD. Childhood adiposity had a strong inverse effect on mammographic DA, while adulthood adiposity increased NDA. Later menarche had an effect of increasing DA and PD, but when accounting for childhood adiposity, this effect attenuated to the null. DA and PD had a risk-increasing effect on breast cancer across all subtypes. The MD single-nucleotide polymorphism (SNP) estimates were extremely heterogeneous, and examination of the SNPs suggested different mechanisms may be linking MD and breast cancer. Finally, MR mediation analysis estimated that 56% (95% CIs [32% - 79%]) of the childhood adiposity effect on breast cancer risk was mediated via DA. In this work, we sought to disentangle the relationship between factors affecting MD and breast cancer. We showed that higher childhood adiposity decreases mammographic DA, which subsequently leads to reduced breast cancer risk. Understanding this mechanism is of great importance for identifying potential targets of intervention, since advocating weight gain in childhood would not be recommended.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA