Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Inorg Chem ; 63(2): 1000-1009, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38173271

RESUMO

Semihydrogenation of internal alkynes catalyzed by the air-stable imidazolyl amino [Mo3S4Cl3(ImNH2)3]+ cluster selectively affords the (Z)-alkene under soft conditions in excellent yields. Experimental results suggest a sulfur-based mechanism with the formation of a dithiolene adduct through interaction of the alkyne with the bridging sulfur atoms. However, computational studies indicate that this mechanism is unable to explain the experimental outcome: mild reaction conditions, excellent selectivity toward the (Z)-isomer, and complete deuteration of the vinylic positions in the presence of CD3OD and CH3OD. An alternative mechanism that explains the experimental results is proposed. The reaction begins with the hydrogenation of two of the Mo3(µ3-S)(µ-S)3 bridging sulfurs to yield a bis(hydrosulfide) intermediate that performs two sequential hydrogen atom transfers (HAT) from the S-H groups to the alkyne. The first HAT occurs with a spin change from singlet to triplet. After the second HAT, the singlet state is recovered. Although the dithiolene adduct is more stable than the hydrosulfide species, the large energy required for the subsequent H2 addition makes the system evolve via the second alternative pathway to selectively render the (Z)-alkene with a lower overall activation barrier.

2.
Inorg Chem ; 61(42): 16730-16739, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36239439

RESUMO

Formic acid (FA) dehydrogenation is an attractive process in the implementation of a hydrogen economy. To make this process greener and less costly, the interest nowadays is moving toward non-noble metal catalysts and additive-free protocols. Efficient protocols using earth abundant first row transition metals, mostly iron, have been developed, but other metals, such as molybdenum, remain practically unexplored. Herein, we present the transformation of FA to form H2 and CO2 through a cluster catalysis mechanism mediated by a cuboidal [Mo3S4H3(dmpe)3]+ hydride cluster in the absence of base or any other additive. Our catalyst has proved to be more active and selective than the other molybdenum compounds reported to date for this purpose. Kinetic studies, reaction monitoring, and isolation of the [Mo3S4(OCHO)3(dmpe)3]+ formate reaction intermediate, in combination with DFT calculations, have allowed us to formulate an unambiguous mechanism of FA dehydrogenation. Kinetic studies indicate that the reaction at temperatures up to 60 °C ends at the triformate complex and occurs in a single kinetic step, which can be interpreted in terms of statistical kinetics at the three metal centers. The process starts with the formation of a dihydrogen-bonded species with Mo-H···HOOCH bonds, detected by NMR techniques, followed by hydrogen release and formate coordination. Whereas this process is favored at temperatures up to 60 °C, the subsequent ß-hydride elimination that allows for the CO2 release and closes the catalytic cycle is only completed at higher temperatures. The cycle also operates starting from the [Mo3S4(OCHO)3(dmpe)3]+ formate intermediate, again with preservation of the cluster integrity, which adds our proposal to the list of the infrequent cluster catalysis reaction mechanisms.

3.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142511

RESUMO

In this work, α-Ag2-2xCuxWO4 (0 ≤ x ≤ 0.16) solid solutions with enhanced antibacterial (against methicillin-resistant Staphylococcus aureus) and antifungal (against Candida albicans) activities are reported. A plethora of techniques (X-ray diffraction with Rietveld refinements, inductively coupled plasma atomic emission spectrometry, micro-Raman spectroscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, field emission scanning electron microscopy, ultraviolet-visible spectroscopy, photoluminescence emissions, and X-ray photoelectron spectroscopy) were employed to characterize the as-synthetized samples and determine the local coordination geometry of Cu2+ cations at the orthorhombic lattice. To find a correlation between morphology and biocide activity, the experimental results were sustained by first-principles calculations at the density functional theory level to decipher the cluster coordinations and electronic properties of the exposed surfaces. Based on the analysis of the under-coordinated Ag and Cu clusters at the (010) and (101) exposed surfaces, we propose a mechanism to explain the biocide activity of these solid solutions.


Assuntos
Desinfetantes , Nanopartículas Metálicas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Desinfetantes/farmacologia , Nanopartículas Metálicas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
4.
Phys Chem Chem Phys ; 21(31): 17221-17231, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31346590

RESUMO

Cubane-type Mo3S4 cluster hydrides decorated with phosphine ligands are active catalysts for the transfer hydrogenation of nitroarenes to aniline derivatives in the presence of formic acid (HCOOH) and triethylamine (Et3N). The process is highly selective and most of the cluster species involved in the catalytic cycle have been identified through reaction monitoring. Formation of a dihydrogen cluster intermediate has also been postulated based on previous kinetic and theoretical studies. However, the different steps involved in the transfer hydrogenation from the cluster to the nitroarene to finally produce aniline remain unclear. Herein, we report an in-depth computational investigation into this mechanism. Et3N reduces the activation barrier associated with the formation of Mo-HHOOCH dihydrogen species. The global catalytic process is highly exergonic and occurs in three consecutive steps with nitrosobenzene and N-phenylhydroxylamine as reaction intermediates. Our computational findings explain how hydrogen is transferred from these Mo-HHOOCH dihydrogen adducts to nitrobenzene with the concomitant formation of nitrosobenzene and the formate substituted cluster. Then, a ß-hydride elimination reaction accompanied by CO2 release regenerates the cluster hydride. Two additional steps are needed for hydrogen transfer from the dihydrogen cluster to nitrosobenzene and N-phenylhydroxylamine to finally produce aniline. Our results show that the three metal centres in the Mo3S4 unit act independently, so the cluster can exist in up to ten different forms that are capable of opening a wide range of reaction paths. This behaviour reveals the outstanding catalytic possibilities of this kind of cluster complexes, which work as highly efficient catalytic machines.

5.
Chemistry ; 23(53): 13205-13212, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28767165

RESUMO

Herein, we report a straightforward protocol for the preparation of N,N-dimethylated amines from readily available nitro starting materials using formic acid as a renewable C1 source and silanes as reducing agents. This tandem process is efficiently accomplished in the presence of a cubane-type Mo3 PtS4 catalyst. For the preparation of the novel [Mo3 Pt(PPh3 )S4 Cl3 (dmen)3 ]+ (3+ ) (dmen: N,N'-dimethylethylenediamine) compound we have followed a [3+1] building block strategy starting from the trinuclear [Mo3 S4 Cl3 (dmen)3 ]+ (1+ ) and Pt(PPh3 )4 (2) complexes. The heterobimetallic 3+ cation preserves the main structural features of its 1+ cluster precursor. Interestingly, this catalytic protocol operates at room temperature with high chemoselectivity when the 3+ catalyst co-exists with its trinuclear 1+ precursor. N-heterocyclic arenes, double bonds, ketones, cyanides and ester functional groups are well retained after N-methylation of the corresponding functionalized nitroarenes. In addition, benzylic-type as well as aliphatic nitro compounds can also be methylated following this protocol.

6.
Inorg Chem ; 55(19): 9912-9922, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27673370

RESUMO

Treatment of the triangular [Mo3S4Cl3(dbbpy)3]Cl cluster ([1]Cl) with CuCl produces a novel tetrametallic cuboidal cluster [Mo3(CuCl)S4Cl3(dbbpy)3][CuCl2] ([2][CuCl2]), whose crystal structure was determined by X-ray diffraction (dbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine). This species, which contains two distinct types of Cu(I), is the first example of a diimine-functionalized heterometallic M3M'S4 cluster. Kinetics studies on both the formation of the cubane from the parent trinuclear cluster and its dissociation after treatment with halides, supported by NMR, electrospray ionization mass spectrometry, cyclic voltammetry, and density functional theory calculations, are provided. On the one hand, the results indicate that addition of Cu(I) to [1]+ is so fast that its kinetics can be monitored only by cryo-stopped flow at -85 °C. On the other hand, the release of the CuCl unit in [2]+ is also a fast process, which is unexpectedly assisted by the CuCl2- counteranion in a process triggered by halide (X-) anions. The whole set of results provide a detailed picture of the assembly-disassembly processes in this kind of cluster. Interconversion between trinuclear M3S4 clusters and their heterometallic M3M'S4 derivatives can be a fast process occurring readily under the conditions employed during reactivity and catalytic studies, so their occurrence is a possibility that must be taken into account in future studies.

7.
Inorg Chem ; 54(2): 607-18, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25551666

RESUMO

The aminophosphine ligand (2-aminoethyl)diphenylphosphine (edpp) has been coordinated to the W3(µ-S)(µ-S)3 cluster unit to afford trimetallic complex [W3S4Br3(edpp)3](+) (1(+)) in a one-step synthesis process with high yields. Related [W3S4X3(edpp)3](+) clusters (X = F(-), Cl(-), NCS(-); 2(+)-4(+)) have been isolated by treating 1(+) with the corresponding halide or pseudohalide salt. The structure of complexes 1(+) to 4(+) contains an incomplete W3S4 cubane-type cluster unit, and only one of the possible isomers is formed: the one with the phosphorus atoms trans to the capping sulfur and the amino groups trans to the bridging sulphurs. The remaining coordination position on each metal is occupied by X. Detailed studies using stopped-flow, (31)P{(1)H} NMR, and ESI-MS have been carried out in order to understand the solution behavior and the kinetics of interconversion among species 1(+), 2(+), 3(+), and 4(+) in solution. Density functional theory (DFT) calculations have been also carried out on the reactions of cluster 1(+) with the different anions. The whole set of experimental and theoretical data indicate that the actual mechanism of substitutions in these clusters is strongly dependent on the nature of the leaving and entering anions. The interaction between an entering F(-) and the amino group coordinated to the adjacent metal have also been found to be especially relevant to the kinetics of these reactions.


Assuntos
Etilaminas/química , Halogênios/química , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Fosfinas/química , Enxofre/química , Tungstênio/química , Técnicas de Química Sintética , Cinética , Ligantes , Modelos Moleculares , Conformação Molecular , Teoria Quântica
8.
Dalton Trans ; 53(9): 4147-4153, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38318770

RESUMO

A new method for the generation of benzyl radicals from terminal aromatic alkynes has been developed, which allows the direct cross coupling with acrylate derivatives. Our additive-free protocol employs air-stable diamino Mo3S4 cubane-type cluster catalysts in the presence of hydrogen. A sulfur-centered cluster catalysis mechanism for benzyl radical formation is proposed based on catalytic and stoichiometric experiments. The process starts with the cluster hydrogen activation to form a bis(hydrosulfido) [Mo3(µ3-S)(µ-S)(µ-SH)2Cl3(dmen)3]+ intermediate. The reaction of various aromatic terminal alkynes containing different functionalities with a series of acrylates affords the corresponding Giese-type radical addition products.

9.
Inorg Chem ; 52(15): 8713-22, 2013 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23848838

RESUMO

Water-soluble [M3S4X3(dhbupe)3](+) diphosphino complexes (dhbupe = 1,2-bis(bis(hydroxybutyl)phosphino)ethane), 1(+) (M = Mo, X = Cl) and 2(+) (M = W; X = Br), have been synthesized by extending the procedure used for the preparation of their hydroxypropyl analogues by reaction of the M3S4(PPh3)3X4(solvent)x molecular clusters with the corresponding 1,2-bis(bishydroxyalkyl)diphosphine. The solid state structure of the [M3S4X3(dhbupe)3](+) cation possesses a C3 symmetry with a cuboidal M3S4 unit, and the outer positions are occupied by one halogen and two phosphorus atoms of the diphosphine ligand. At a basic pH, the halide ligands are substituted by hydroxo groups to afford the corresponding [Mo3S4(OH)3(dhbupe)3](+) (1OH(+)) and [W3S4(OH)3(dhbupe)3](+) (2OH(+)) complexes. This behavior is similar to that found in 1,2-bis(bis(hydroxymethyl)phosphino)ethane (dhmpe) complexes and differs from that observed for 1,2-bis(bis(hydroxypropyl)phosphino)ethane (dhprpe) derivatives. In the latter case, an alkylhydroxo group of the functionalized diphosphine replaces the chlorine ligands to afford Mo3S4 complexes in which the deprotonated dhprpe acts in a tridentate fashion. Detailed studies based on stopped-flow, (31)P{(1)H} NMR, and electrospray ionization mass spectrometry techniques have been carried out in order to understand the solution behavior and kinetics of interconversion between the different species formed in solution: 1 and 1OH(+) or 2 and 2OH(+). On the basis of the kinetic results, a mechanism with two parallel reaction pathways involving water and OH(-) attacks is proposed for the formal substitution of halides by hydroxo ligands. On the other hand, reaction of the hydroxo clusters with HX acids occurs with protonation of the OH(-) ligands followed by substitution of coordinated water by X(-).

10.
Dalton Trans ; 52(41): 14982-14994, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37811730

RESUMO

Here, we present the synthesis of a highly efficient V-doped α-Ag2WO4 catalyst for the oxidation of sulfides to sulfones, exhibiting a high degree of tolerance towards various sensitive functional groups. Remarkably, the catalysts with 0.01% V-doping content exhibited outstanding selectivity towards the oxidation process. Scavenger experiments indicated the direct involvement of electron-hole (e-/h+) pairs, hydroxyl radical (˙OH), and singlet oxygen (1O2) in the catalytic mechanism. Based on the experimental and theoretical results, the higher activity of the V-doped α-Ag2WO4 samples was associated with the preferential formation of the (100) surface in the catalyst morphology.

11.
Inorg Chem ; 51(20): 10512-21, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23009632

RESUMO

A general protocol to access Mo(3)FeS(4)(4+) clusters selectively modified at the Fe coordination site is presented starting from the all-chlorine Mo(3)(FeCl)S(4)(dmpe)(3)Cl(3) (1) [dmpe = 1,2-bis(dimethylphosphane-ethane)] cluster and tetrabutylammonium salts (n-Bu(4)NX) (X = CN(-), N(3)(-), and PhS(-)). Clusters Mo(3)(FeX)S(4)(dmpe)(3)Cl(3) [X = CN(-) (2), N(3)(-) (3), and PhS(-) (4)] are prepared in high yield, and comparison of geometric and redox features upon modification of the coordination environment at the Fe site at parity of ligands at the Mo sites is also presented. The existence of the cubane-type Mo(3)FeS(4)(4+,5+) redox couple is demonstrated by cyclic voltammetry and for compound 1 by cluster synthesis and X-ray structure determinations. Ground states for the 1/1(+) redox couple are evaluated on the basis of magnetic susceptibility measurements, electron paramagnetic resonance, and (57)Fe Mössbauer spectroscopy aimed at providing an input of experimental data for electronic structure determination based on density functional theory calculations.


Assuntos
Elétrons , Ferro/química , Molibdênio/química , Compostos Organometálicos/química , Fosfinas/química , Análise Espectral , Enxofre/química , Ligantes , Fenômenos Magnéticos , Modelos Moleculares , Conformação Molecular , Oxirredução , Teoria Quântica
12.
Inorg Chem ; 51(12): 6794-802, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22668127

RESUMO

The [Mo(3)S(4)Cl(3)(dhprpe)(3)](+) (1(+)) cluster cation has been prepared by reaction between Mo(3)S(4)Cl(4)(PPh(3))(3) (solvent)(2) and the water-soluble 1,2-bis(bis(hydroxypropyl)phosphino)ethane (dhprpe, L) ligand. The crystal structure of [1](2)[Mo(6)Cl(14)] has been determined by X-ray diffraction methods and shows the typical incomplete cuboidal structure with a capping and three bridging sulfides. The octahedral coordination around each metal center is completed with a chlorine and two phosphorus atoms of the diphosphine ligand. Depending on the pH, the hydroxo group of the functionalized diphosphine can substitute the chloride ligands and coordinate to the cluster core to give new clusters with tridentate deprotonated dhprpe ligands of formula [Mo(3)S(4)(dhprpe-H)(3)](+) (2(+)). A detailed study based on stopped-flow, (31)P{(1)H} NMR, and electrospray ionization mass spectrometry techniques has been carried out to understand the behavior of acid-base equilibria and the kinetics of interconversion between the 1(+) and the 2(+) forms. Both conversion of 1(+) to 2(+) and its reverse process occur in a single kinetic step, so that reactions proceed at the three metal centers with statistically controlled kinetics. The values of the rate constants under different conditions are used to discuss on the mechanisms of opening and closing of the chelate rings with coordination or dissociation of chloride.


Assuntos
Complexos de Coordenação/síntese química , Dissulfetos/química , Molibdênio/química , Fosfinas/química , Água/química , Complexos de Coordenação/química , Cinética , Ligantes , Modelos Moleculares , Estrutura Molecular , Solubilidade
13.
Angew Chem Int Ed Engl ; 51(31): 7794-8, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22711684

RESUMO

Chemoselective cubes: Cubane-type [Mo(3)S(4)X(3)(dmpe)(3)](+) clusters (dmpe = 1,2-(bis)dimethylphosphinoethane), in combination with an azeotropic 5:2 mixture of HCOOH and NEt(3) as the reducing agent, act as selective cluster catalysts (X = H) or precatalysts (X = Cl) for the transfer hydrogenation of functionalized nitroarenes, without the formation of hazardous hydroxylamines.


Assuntos
Compostos de Anilina/síntese química , Complexos de Coordenação/química , Nitrocompostos/química , Compostos de Anilina/química , Catálise , Complexos de Coordenação/síntese química , Hidrogenação , Estrutura Molecular
14.
J Am Chem Soc ; 133(32): 12875-9, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21740024

RESUMO

The first well-defined iron-based catalyst system for the reduction of nitroarenes to anilines has been developed applying formic acid as reducing agent. A broad range of substrates including other reducible functional groups were converted to the corresponding anilines in good to excellent yields at mild conditions. Notably, the process constitutes a rare example of base-free transfer hydrogenations.


Assuntos
Compostos de Anilina/química , Hidrocarbonetos Aromáticos/química , Ferro/química , Nitrocompostos/química , Catálise , Hidrogenação , Oxirredução
15.
Chemistry ; 16(5): 1613-23, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20029921

RESUMO

The kinetics of reaction of the [W(3)PdS(4)H(3)(dmpe)(3)(CO)](+) hydride cluster (1(+)) with HCl has been measured in dichloromethane, and a second-order dependence with respect to the acid is found for the initial step. In the presence of added BF(4) (-) the second-order dependence is maintained, but there is a deceleration that becomes more evident as the acid concentration increases. DFT calculations indicate that these results can be rationalized on the basis of the mechanism previously proposed for the same reaction of the closely related [W(3)S(4)H(3)(dmpe)(3)](+) cluster, which involves parallel first- and second-order pathways in which the coordinated hydride interacts with one and two acid molecules, and ion pairing to BF(4) (-) hinders formation of dihydrogen bonded adducts able to evolve to the products of proton transfer. Additional DFT calculations are reported to understand the behavior of the cluster in neat acetonitrile and acetonitrile-water mixtures. The interaction of the HCl molecule with CH(3)CN is stronger than the W-H...HCl dihydrogen bond and so the reaction pathways operating in dichloromethane become inefficient, in agreement with the lack of reaction between 1(+) and HCl in neat acetonitrile. However, the attacking species in acetonitrile-water mixtures is the solvated proton, and DFT calculations indicate that the reaction can then go through pathways involving solvent attack to the W centers, while still maintaining the coordinated hydride, which is made possible by the capability of the cluster to undergo structural changes in its core.


Assuntos
Paládio/química , Sulfetos/química , Tungstênio/química , Catálise , Cristalografia por Raios X , Cinética , Estrutura Molecular , Prótons , Solventes
16.
Inorg Chem ; 49(17): 8045-55, 2010 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-20695430

RESUMO

The gas phase fragmentation reactions of sulfur-rich [Mo(3)S(7)Br(6)](2-) (1(2-)), [Mo(3)S(7)(bdt)(3)](2-) (2(2-)), and [Mo(3)S(4)(bdt)(3)](2-) (3(2-)) (bdt = benzenedithiolate) complexes have been investigated by electrospray ionization (ESI) tandem mass spectrometry and theoretical calculations at the density functional theory level. Upon collision induced dissociation (CID) conditions, the brominated 1(2-) dianion dissociates through two sequential steps that involves a heterolytic Mo-Br cleavage to give [Mo(3)S(7)Br(5)](-) plus Br(-) followed by a two-electron redox process that affords [Mo(3)S(5)Br(5)](-) and diatomic S(2) sulfur. Dianion [Mo(3)S(7)(bdt)(3)](2-) (2(2-)) dissociates through two sequential redox processes evolving diatomic S(2) sulfur and neutral bdt to yield [Mo(3)S(5)(bdt)(3)](2-) and [Mo(3)S(5)(bdt)(2)](2-), respectively. Conversely, dianion [Mo(3)S(4)(bdt)(3)](2-) (3(2-)), with sulfide instead of disulfide S(2)(2-) bridged ligands, remains intact under identical fragmentation conditions, thus highlighting the importance of disulfide ligands (S(2)(2-)) as electron reservoirs to trigger redox reactions. Regioselective incorporation of (34)S and Se at the equatorial position of the Mo(3)S(7) cluster core in 1(2-) and 2(2-) have been used to identify the product ions along the fragmentation pathways. Reaction mechanisms for the gas-phase dissociation pathways have been elucidated by means of B3LYP calculations, and a comparison with the solution reactivity of Mo(3)S(7) and Mo(3)S(4) clusters as well as closely related Mo/S/dithiolene systems is also discussed.


Assuntos
Compostos de Bromo/química , Dissulfetos/química , Molibdênio/química , Modelos Moleculares , Oxirredução , Teoria Quântica , Espectrometria de Massas por Ionização por Electrospray , Enxofre/química
17.
Inorg Chem ; 49(4): 1894-904, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20085305

RESUMO

A two-step procedure for the preparation of hybrid complexes based on electroactive tetrathiafulvalene (TTF)- functionalized o-P(2) diphosphanes (o-P(2) = 3,4-dimethyl-3,4-bis(diphenylphosphino)tetrathiafulvalene) and inorganic C(3)-symmetrized Mo(3)Q(4) (Q = S, Se) clusters, namely, [Mo(3)S(4)Cl(3)(o-P(2))(3)]PF(6) ([1]PF(6)) and [Mo(3)Se(4)Cl(3)(o-P(2))(3)]PF(6) ([2]PF(6)), is reported. Their molecular and electronic structures are also described on the basis of X-ray diffraction experiments and density functional theory (DFT) calculations aimed at understanding the interactions established between both the organic and the inorganic parts. Cyclic voltammograms of compounds [1]PF(6) and [2]PF(6) display reduction features associated to the Mo(3)Q(4) core and oxidation characteristics due to the TTF skeleton. The oxidation chemistry of [1]PF(6) and [2]PF(6) in solution is also investigated by means of in situ electrospray ionization (ESI) mass spectrometry, UV-vis, and, electron paramagnetic resonance (EPR) measurements. Upon addition of increasing amounts of NOPF(6) (less than 3 equiv), the sequential formation of 1(n+) (n = 1-4) species was observed whereas addition of a 3-fold excess of NOPF(6) allows to access the three-electron oxidized [Mo(3)S(4)Cl(3)(o-P(2))(3)](4+) (1(4+)) and [Mo(3)Se(4)Cl(3)(o-P(2))(3)](4+) (2(4+)) cations. These 1(4+) and 2(4+) cations represent still rare examples of complexes with oxidized TTF-ligands that are remarkably stable either toward diphosphane dissociation or phosphane oxidation. Polycrystalline samples of compound [1](PF(6))(4) were obtained by oxidation of compound [1]PF(6) using NOPF(6) which were analyzed by solid state absorption, UV-vis, and Raman spectroscopies.


Assuntos
Compostos Heterocíclicos/química , Molibdênio/química , Selênio/química , Compostos de Sulfidrila/química , Eletroquímica/métodos , Estrutura Molecular , Espectrofotometria Infravermelho/métodos , Espectrofotometria Ultravioleta/métodos
18.
Inorg Chem ; 49(13): 5935-42, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20515025

RESUMO

The molybdenum(IV) cluster hydrides of formula [Mo(3)S(4)H(3)(diphosphine)(3)](+) with diphosphine = 1,2-(bis)dimethylphosphinoethane (dmpe) or (+)-1,2-bis-(2R,5R)-2,5-(dimethylphospholan-1-yl)ethane ((R,R)-Me-BPE) have been isolated in moderate to high yields by reacting their halide precursors with borohydride. Complex [Mo(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) as well as its tungsten analogue are obtained in optically pure forms. Reaction of the incomplete cuboidal [M(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) (M = Mo, W) complex with acids in CH(2)Cl(2) solution shows kinetic features similar to those observed for the related incomplete cuboidal [W(3)S(4)H(3)(dmpe)(3)](+) cluster. However, there is a decrease in the value of the rate constants that is explained as a result of the higher steric effect of the diphosphine. The rate constants for the reaction of both clusters [M(3)S(4)H(3)((R,R)-Me-BPE)(3)](+) (M = Mo, W) with HCl have similar values, thus indicating a negligible effect of the metal center on the kinetics of reaction of the hydrides coordinated to any of both transition metals.


Assuntos
Molibdênio/química , Compostos Organometálicos/química , Fosfinas/química , Tungstênio/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Compostos Organometálicos/síntese química , Fosfinas/síntese química , Espectrometria de Massas por Ionização por Electrospray , Espectroscopia de Infravermelho com Transformada de Fourier , Estereoisomerismo , Difração de Raios X
19.
Chemistry ; 15(18): 4582-94, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19291725

RESUMO

Opening the cluster core: Substitution of the chloride ligand in the novel cationic cluster [W(3)CuS(4)H(3)Cl(dmpe)(3)](+) (see figure; dmpe=1,2-bis(dimethylphosphino)ethane) by acetonitrile is promoted by water addition. Kinetic and density functional theory studies lead to a mechanistic proposal in which acetonitrile or water attack causes the opening of the cluster core with dissociation of one of the Cu--S bonds to accommodate the entering ligand.Reaction of the incomplete cuboidal cationic cluster [W(3)S(4)H(3)(dmpe)(3)](+) (dmpe=1,2-bis(dimethylphosphino)ethane) with Cu(I) compounds produces rare examples of cationic heterodimetallic hydrido clusters of formula [W(3)CuClS(4)H(3)(dmpe)(3)](+) ([1](+)) and [W(3)Cu(CH(3)CN)S(4)H(3)(dmpe)(3)](2+) ([2](2+)). An unexpected conversion of [1](+) into [2](2+), which involves substitution of chloride by CH(3)CN at the copper centre, has been observed in CH(3)CN/H(2)O mixtures. Surprisingly, formation of the acetonitrile complex does not occur in neat acetonitrile and requires the presence of water. The kinetics of this reaction has been studied and the results indicate that the process is accelerated when the water concentration increases and is retarded in the presence of added chloride. Computational studies have also been carried out and a mechanism for the substitution reaction is proposed in which attack at the copper centre by acetonitrile or water causes disruption of the cubane-type core. ESI-MS experiments support the formation of intermediates with an open-core cluster structure. This kind of process is unprecedented in the chemistry of M(3)M'Q(4) (M=Mo, W; Q=S, Se) clusters, and allows for the transient appearance of a new coordination site at the M' site which could explain some aspects of the reactivity and catalytic properties of this kind of clusters.


Assuntos
Cobre/química , Compostos de Tungstênio/química , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Estrutura Molecular , Termodinâmica , Compostos de Tungstênio/síntese química
20.
Chem Commun (Camb) ; (23): 3440-2, 2009 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-19503897

RESUMO

Chemical oxidation of a Mo(3)S(7) cluster featuring catecholate ligands, namely [Mo(3)S(7)(Cl(4)cat)(3)](2-) (Cl(4)cat = tetrachlorocatecholate), allows the isolation of a unique nanoscopic molecular cage made of four iodide-bridged Mo(3)S(7) clusters as the kinetically favoured product.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA