Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
PLoS Biol ; 15(8): e2002176, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28763438

RESUMO

Enhancing brown fat activity and promoting white fat browning are attractive therapeutic strategies for treating obesity and associated metabolic disorders. To provide a comprehensive picture of the gene regulatory network in these processes, we conducted a series of transcriptome studies by RNA sequencing (RNA-seq) and quantified the mRNA and long noncoding RNA (lncRNA) changes during white fat browning (chronic cold exposure, beta-adrenergic agonist treatment, and intense exercise) and brown fat activation or inactivation (acute cold exposure or thermoneutrality, respectively). mRNA-lncRNA coexpression networks revealed dynamically regulated lncRNAs to be largely embedded in nutrient and energy metabolism pathways. We identified a brown adipose tissue-enriched lncRNA, lncBATE10, that was governed by the cAMP-cAMP response element-binding protein (Creb) axis and required for a full brown fat differentiation and white fat browning program. Mechanistically, lncBATE10 can decoy Celf1 from Pgc1α, thereby protecting Pgc1α mRNA from repression by Celf1. Together, these studies provide a comprehensive data framework to interrogate the transcriptomic changes accompanying energy homeostasis transition in adipose tissue.


Assuntos
Tecido Adiposo/metabolismo , Proteínas CELF1/metabolismo , Metabolismo Energético , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Diferenciação Celular , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Cultura Primária de Células , Transdução de Sinais , Transcriptoma
2.
Proc Natl Acad Sci U S A ; 110(9): 3387-92, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23401553

RESUMO

The prevalence of obesity has led to a surge of interest in understanding the detailed mechanisms underlying adipocyte development. Many protein-coding genes, mRNAs, and microRNAs have been implicated in adipocyte development, but the global expression patterns and functional contributions of long noncoding RNA (lncRNA) during adipogenesis have not been explored. Here we profiled the transcriptome of primary brown and white adipocytes, preadipocytes, and cultured adipocytes and identified 175 lncRNAs that are specifically regulated during adipogenesis. Many lncRNAs are adipose-enriched, strongly induced during adipogenesis, and bound at their promoters by key transcription factors such as peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (CEBPα). RNAi-mediated loss of function screens identified functional lncRNAs with varying impact on adipogenesis. Collectively, we have identified numerous lncRNAs that are functionally required for proper adipogenesis.


Assuntos
Adipogenia/genética , RNA Longo não Codificante/metabolismo , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Teoria da Informação , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fases de Leitura Aberta/genética , Fenótipo , RNA Longo não Codificante/genética , Reprodutibilidade dos Testes , Transcriptoma/genética
3.
Proc Natl Acad Sci U S A ; 109(36): 14568-73, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22904186

RESUMO

The effects of adiponectin on hepatic glucose and lipid metabolism at transcriptional level are largely unknown. We profiled hepatic gene expression in adiponectin knockout (KO) and wild-type (WT) mice by RNA sequencing. Compared with WT mice, adiponectin KO mice fed a chow diet exhibited decreased mRNA expression of rate-limiting enzymes in several important glucose and lipid metabolic pathways, including glycolysis, tricarboxylic acid cycle, fatty-acid activation and synthesis, triglyceride synthesis, and cholesterol synthesis. In addition, binding of the transcription factor Hnf4a to DNAs encoding several key metabolic enzymes was reduced in KO mice, suggesting that adiponectin might regulate hepatic gene expression via Hnf4a. Phenotypically, adiponectin KO mice possessed smaller epididymal fat pads and showed reduced body weight compared with WT mice. When fed a high-fat diet, adiponectin KO mice showed significantly reduced lipid accumulation in the liver. These lipogenic defects are consistent with the down-regulation of lipogenic genes in the KO mice.


Assuntos
Adiponectina/metabolismo , Regulação da Expressão Gênica/genética , Glucose/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , Adiponectina/genética , Tecido Adiposo/patologia , Análise de Variância , Animais , Sequência de Bases , Peso Corporal/genética , Imunoprecipitação da Cromatina , DNA/metabolismo , DNA Complementar/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Triglicerídeos/metabolismo
4.
BMJ Case Rep ; 17(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38171640

RESUMO

We report a case of multisystem inflammatory syndrome in children (MIS-C) in an East Asian toddler. He presented with a 2-day history of fever and pyuria, 5 weeks before that he had recovered from COVID-19. He was initially treated as urinary tract infection. On day 5 of fever, he was noted to have bilateral non-suppurative limbus-sparing conjunctivitis, red and cracked lips and erythematous extremities. Investigations showed raised inflammatory markers (C-reactive protein and erythrocyte sedimentation rate), thrombocytopenia and a markedly elevated NT-proBNP. He received prompt and appropriate treatment inpatient; however, he still had mild coronary abnormalities at 9 months postdischarge. The aim of this paper is to describe the initial presentation and progress of a case of MIS-C. The unique features of this case are his initial presentation of pyuria and notably, his demography (young age, East Asian) which is more typical of Kawasaki disease than MIS-C.


Assuntos
COVID-19 , Conjuntivite , Piúria , Masculino , Pré-Escolar , Humanos , Assistência ao Convalescente , Alta do Paciente , Febre/etiologia , Síndrome de Resposta Inflamatória Sistêmica/diagnóstico , COVID-19/complicações
5.
Diabetes ; 67(6): 1045-1056, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519872

RESUMO

Obesity induces profound transcriptome changes in adipocytes, and recent evidence suggests that long-noncoding RNAs (lncRNAs) play key roles in this process. We performed a comprehensive transcriptome study by RNA sequencing in adipocytes isolated from interscapular brown, inguinal, and epididymal white adipose tissue in diet-induced obese mice. The analysis revealed a set of obesity-dysregulated lncRNAs, many of which exhibit dynamic changes in the fed versus fasted state, potentially serving as novel molecular markers of adipose energy status. Among the most prominent lncRNAs is Lnc-leptin, which is transcribed from an enhancer region upstream of leptin (Lep). Expression of Lnc-leptin is sensitive to insulin and closely correlates to Lep expression across diverse pathophysiological conditions. Functionally, induction of Lnc-leptin is essential for adipogenesis, and its presence is required for the maintenance of Lep expression in vitro and in vivo. Direct interaction was detected between DNA loci of Lnc-leptin and Lep in mature adipocytes, which diminished upon Lnc-leptin knockdown. Our study establishes Lnc-leptin as a new regulator of Lep.


Assuntos
Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Adipogenia , Regulação da Expressão Gênica , Leptina/agonistas , Obesidade/metabolismo , RNA Longo não Codificante/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Marrons/patologia , Adipócitos Brancos/efeitos dos fármacos , Adipócitos Brancos/patologia , Adipogenia/efeitos dos fármacos , Animais , Sequência de Bases , Biomarcadores/metabolismo , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/efeitos dos fármacos , Elementos Facilitadores Genéticos/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Leptina/antagonistas & inibidores , Leptina/genética , Leptina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/patologia , Interferência de RNA , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/química , RNA Interferente Pequeno/metabolismo
6.
Nat Commun ; 9(1): 1329, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29626186

RESUMO

Obesity has emerged as an alarming health crisis due to its association with metabolic risk factors such as diabetes, dyslipidemia, and hypertension. Recent work has demonstrated the multifaceted roles of lncRNAs in regulating mouse adipose development, but their implication in human adipocytes remains largely unknown. Here we present a catalog of 3149 adipose active lncRNAs, of which 909 are specifically detected in brown adipose tissue (BAT) by performing deep RNA-seq on adult subcutaneous, omental white adipose tissue and fetal BATs. A total of 169 conserved human lncRNAs show positive correlation with their nearby mRNAs, and knockdown assay supports a role of lncRNAs in regulating their nearby mRNAs. The knockdown of one of those, lnc-dPrdm16, impairs brown adipocyte differentiation in vitro and a significant reduction of BAT-selective markers in in vivo. Together, our work provides a comprehensive human adipose catalog built from diverse fat depots and establishes a roadmap to facilitate the discovery of functional lncRNAs in adipocyte development.


Assuntos
Adipogenia/genética , Tecido Adiposo Marrom/crescimento & desenvolvimento , Tecido Adiposo Marrom/metabolismo , RNA Longo não Codificante/genética , Adipócitos Marrons/citologia , Adipócitos Marrons/metabolismo , Animais , Diferenciação Celular/genética , Células Cultivadas , Temperatura Baixa , Sequência Conservada , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Marcadores Genéticos , Humanos , Camundongos , Obesidade/genética , Obesidade/metabolismo , RNA Longo não Codificante/metabolismo , Termogênese , Distribuição Tecidual , Fatores de Transcrição/genética , Transcriptoma
7.
Adipocyte ; 5(2): 224-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27386162

RESUMO

The global epidemic in obesity and metabolic syndrome requires novel approaches to tackle. White adipose tissue, traditionally seen as a passive energy-storage organ, can be induced to take on certain characteristics of brown fat in a process called browning. The "browned" white adipose tissue, or beige fat, is a potential anti-obesity target. Various signaling pathways can enhance browning. Wnt is a key regulator of adipocyte biology, but its role in browning has not been explored. In this study, we found that in primary mouse adipocytes derived from the inguinal depot, Wnt inhibition by both chemical and genetic methods significantly enhanced browning. The effect of Wnt inhibition on browning most likely targets the beige precursor cells in selected adipose depots.

8.
Adipocyte ; 4(4): 303-10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26451287

RESUMO

Brown fat has gained widespread attention as a potential therapeutic target to treat obesity and associated metabolic disorders. Indeed, the anti-obesity potential of multiple targets to stimulate both brown adipocyte differentiation and recruitment have been verified in rodent models. However, their therapeutic potential in humans is unknown due to the lack of a human primary brown adipocyte cell culture system. Likewise, the lack of a well-characterized human model has limited the discovery of novel targets for the activation of human brown fat. To address this current need, we aimed to identify and describe the first primary brown adipocyte cell culture system from human fetal interscapular brown adipose tissue. Pre-adipocytes isolated from non-viable human fetal interscapular tissue were expanded and cryopreserved. Cells were then thawed and plated alongside adult human subcutaneous and omental pre-adipocytes for subsequent differentiation and phenotypic characterization. Interscapular pre-adipocytes in cell culture differentiated into mature adipocytes that were morphologically indistinguishable from the adult white depots. Throughout differentiation, cultured human fetal interscapular adipocytes demonstrated increased expression of classical brown fat markers compared to subcutaneous and omental cells. Further, functional analysis revealed an elevation in fatty acid oxidation as well as maximal and uncoupled oxygen consumption in interscapular brown adipocytes compared to white control cells. These data collectively identify the brown phenotype of these cells. Thus, our primary cell culture system derived from non-viable human fetal interscapular brown adipose tissue provides a valuable tool for the study of human brown adipocyte biology and for the development of anti-obesity therapeutics.

9.
Cell Metab ; 21(5): 764-776, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25921091

RESUMO

Brown adipose tissue (BAT) protects against obesity by promoting energy expenditure via uncoupled respiration. To uncover BAT-specific long non-coding RNAs (lncRNAs), we used RNA-seq to reconstruct de novo transcriptomes of mouse brown, inguinal white, and epididymal white fat and identified ∼1,500 lncRNAs, including 127 BAT-restricted loci induced during differentiation and often targeted by key regulators PPARγ, C/EBPα, and C/EBPß. One of them, lnc-BATE1, is required for establishment and maintenance of BAT identity and thermogenic capacity. lnc-BATE1 inhibition impairs concurrent activation of brown fat and repression of white fat genes and is partially rescued by exogenous lnc-BATE1 with mutated siRNA-targeting sites, demonstrating a function in trans. We show that lnc-BATE1 binds heterogeneous nuclear ribonucleoprotein U and that both are required for brown adipogenesis. Our work provides an annotated catalog for the study of fat depot-selective lncRNAs and establishes lnc-BATE1 as a regulator of BAT development and physiology.


Assuntos
Adipócitos Marrons/citologia , RNA Longo não Codificante/genética , Transcriptoma , Adipócitos Marrons/metabolismo , Adipogenia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Células Cultivadas , Humanos , Camundongos , Termogênese , Ativação Transcricional
10.
J Clin Invest ; 125(2): 796-808, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25555215

RESUMO

The hypothalamus is the central regulator of systemic energy homeostasis, and its dysfunction can result in extreme body weight alterations. Insights into the complex cellular physiology of this region are critical to the understanding of obesity pathogenesis; however, human hypothalamic cells are largely inaccessible for direct study. Here, we developed a protocol for efficient generation of hypothalamic neurons from human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) obtained from patients with monogenetic forms of obesity. Combined early activation of sonic hedgehog signaling followed by timed NOTCH inhibition in human ESCs/iPSCs resulted in efficient conversion into hypothalamic NKX2.1+ precursors. Application of a NOTCH inhibitor and brain-derived neurotrophic factor (BDNF) further directed the cells into arcuate nucleus hypothalamic-like neurons that express hypothalamic neuron markers proopiomelanocortin (POMC), neuropeptide Y (NPY), agouti-related peptide (AGRP), somatostatin, and dopamine. These hypothalamic-like neurons accounted for over 90% of differentiated cells and exhibited transcriptional profiles defined by a hypothalamic-specific gene expression signature that lacked pituitary markers. Importantly, these cells displayed hypothalamic neuron characteristics, including production and secretion of neuropeptides and increased p-AKT and p-STAT3 in response to insulin and leptin. Our results suggest that these hypothalamic-like neurons have potential for further investigation of the neurophysiology of body weight regulation and evaluation of therapeutic targets for obesity.


Assuntos
Diferenciação Celular , Hipotálamo/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios , Obesidade/metabolismo , Antígenos de Diferenciação/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Proteínas Hedgehog/metabolismo , Humanos , Hipotálamo/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Proteínas Nucleares/metabolismo , Obesidade/patologia , Pró-Opiomelanocortina/metabolismo , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/metabolismo
11.
Diabetes ; 63(12): 4045-56, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25008181

RESUMO

Brown adipose tissue (BAT) is specialized to burn lipids for heat generation as a natural defense against cold and obesity. Previous studies established microRNAs (miRNAs) as essential regulators of brown adipocyte differentiation, but whether miRNAs are required for the feature maintenance of mature brown adipocytes remains unknown. To address this question, we ablated Dgcr8, a key regulator of the miRNA biogenesis pathway, in mature brown as well as in white adipocytes. Adipose tissue-specific Dgcr8 knockout mice displayed enlarged but pale interscapular brown fat with decreased expression of genes characteristic of brown fat and were intolerant to cold exposure. Primary brown adipocyte cultures in vitro confirmed that miRNAs are required for marker gene expression in mature brown adipocytes. We also demonstrated that miRNAs are essential for the browning of subcutaneous white adipocytes in vitro and in vivo. Using this animal model, we performed miRNA expression profiling analysis and identified a set of BAT-specific miRNAs that are upregulated during brown adipocyte differentiation and enriched in brown fat compared with other organs. We identified miR-182 and miR-203 as new regulators of brown adipocyte development. Taken together, our study demonstrates an essential role of miRNAs in the maintenance as well as in the differentiation of brown adipocytes.


Assuntos
Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Diferenciação Celular/genética , MicroRNAs/fisiologia , RNA Mensageiro/análise , Adipócitos Brancos/metabolismo , Animais , Células Cultivadas , Técnicas de Inativação de Genes , Camundongos , Camundongos Knockout , Proteínas de Ligação a RNA/genética
12.
Biosci Rep ; 33(5)2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23895241

RESUMO

Adipose tissue has a central role in the regulation of energy balance and homoeostasis. There are two main types of adipose tissue: WAT (white adipose tissue) and BAT (brown adipose tissue). WAT from certain depots, in response to appropriate stimuli, can undergo a process known as browning where it takes on characteristics of BAT, notably the induction of UCP1 (uncoupling protein 1) expression and the presence of multilocular lipid droplets and multiple mitochondria. How browning is regulated is an intense topic of investigation as it has the potential to tilt the energy balance from storage to expenditure, a strategy that holds promise to combat the growing epidemic of obesity and metabolic syndrome. This review focuses on the transcriptional regulators as well as various proteins and secreted mediators that have been shown to play a role in browning. Emphasis is on describing how many of these factors exert their effects by regulating the three main transcriptional regulators of classical BAT development, namely PRDM16 (PR domain containing 16), PPARγ (peroxisome proliferator-activated receptor γ) and PGC-1α (peroxisome proliferator-activated receptor γ coactivator 1α), which have been shown to be the key nodes in the regulation of inducible brown fat.


Assuntos
Adipócitos Brancos/fisiologia , Tecido Adiposo Marrom/citologia , Tecido Adiposo Branco/citologia , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/fisiologia , Animais , Transdiferenciação Celular , Regulação da Expressão Gênica , Hormônios/fisiologia , Humanos , Metabolismo dos Lipídeos , Fatores de Transcrição/fisiologia
13.
Cell Rep ; 5(1): 259-70, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24095730

RESUMO

Diet-induced obesity (DIO) predisposes individuals to insulin resistance, and adipose tissue has a major role in the disease. Insulin resistance can be induced in cultured adipocytes by a variety of treatments, but what aspects of the in vivo responses are captured by these models remains unknown. We use global RNA sequencing to investigate changes induced by TNF-α, hypoxia, dexamethasone, high insulin, and a combination of TNF-α and hypoxia, comparing the results to the changes in white adipose tissue from DIO mice. We found that different in vitro models capture distinct features of DIO adipose insulin resistance, and a combined treatment of TNF-α and hypoxia is most able to mimic the in vivo changes. Using genome-wide DNase I hypersensitivity followed by sequencing, we further examined the transcriptional regulation of TNF-α-induced insulin resistance, and we found that C/EPBß is a potential key regulator of adipose insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Resistência à Insulina/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
14.
PLoS One ; 6(6): e19778, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21655096

RESUMO

The growing epidemic of obesity and metabolic diseases calls for a better understanding of adipocyte biology. The regulation of transcription in adipocytes is particularly important, as it is a target for several therapeutic approaches. Transcriptional outcomes are influenced by both histone modifications and transcription factor binding. Although the epigenetic states and binding sites of several important transcription factors have been profiled in the mouse 3T3-L1 cell line, such data are lacking in human adipocytes. In this study, we identified H3K56 acetylation sites in human adipocytes derived from mesenchymal stem cells. H3K56 is acetylated by CBP and p300, and deacetylated by SIRT1, all are proteins with important roles in diabetes and insulin signaling. We found that while almost half of the genome shows signs of H3K56 acetylation, the highest level of H3K56 acetylation is associated with transcription factors and proteins in the adipokine signaling and Type II Diabetes pathways. In order to discover the transcription factors that recruit acetyltransferases and deacetylases to sites of H3K56 acetylation, we analyzed DNA sequences near H3K56 acetylated regions and found that the E2F recognition sequence was enriched. Using chromatin immunoprecipitation followed by high-throughput sequencing, we confirmed that genes bound by E2F4, as well as those by HSF-1 and C/EBPα, have higher than expected levels of H3K56 acetylation, and that the transcription factor binding sites and acetylation sites are often adjacent but rarely overlap. We also discovered a significant difference between bound targets of C/EBPα in 3T3-L1 and human adipocytes, highlighting the need to construct species-specific epigenetic and transcription factor binding site maps. This is the first genome-wide profile of H3K56 acetylation, E2F4, C/EBPα and HSF-1 binding in human adipocytes, and will serve as an important resource for better understanding adipocyte transcriptional regulation.


Assuntos
Adipócitos/metabolismo , Genoma Humano/genética , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3-L1 , Acetilação , Adipócitos/citologia , Animais , Sequência de Bases , Sítios de Ligação/genética , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Fator de Transcrição E2F4/genética , Fator de Transcrição E2F4/metabolismo , Perfilação da Expressão Gênica , Fatores de Transcrição de Choque Térmico , Humanos , Lisina/metabolismo , Mesoderma/citologia , Mesoderma/metabolismo , Camundongos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA