Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38339053

RESUMO

The blood-retinal barrier (BRB) is strongly compromised in diabetic retinopathy (DR) due to the detachment of pericytes (PCs) from retinal microvessels, resulting in increased permeability and impairment of the BRB. Western blots, immunofluorescence and ELISA were performed on adipose mesenchymal stem cells (ASCs) and pericyte-like (P)-ASCs by co-cultured human retinal endothelial cells (HRECs) under hyperglycemic conditions (HG), as a model of DR. Our results demonstrated that: (a) platelet-derived growth factor receptor (PDGFR) and its activated form were more highly expressed in monocultured P-ASCs than in ASCs, and this expression increased when co-cultured with HRECs under high glucose conditions (HG); (b) the transcription factor Nrf2 was more expressed in the cytoplasmic fraction of ASCs and in the P-ASC nuclear fraction, under normal glucose and, even more, under HG conditions; (c) cytosolic phospholipase A2 activity and prostaglandin E2 release, stimulated by HG, were significantly reduced in P-ASCs co-cultured with HRECs; (d) HO-1 protein content was significantly higher in HG-P-ASCs/HRECs than P-ASCs/HRECs; and (e) VEGF-A levels in media from HG-co-cultures were reduced in P-ASCs/HRECs with respect to ASCs/HRECs. The data obtained highlighted the potential of autologous differentiated ASCs in future clinical applications based on cell therapy to counteract the damage induced by DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Células-Tronco Mesenquimais , Humanos , Retinopatia Diabética/terapia , Retinopatia Diabética/metabolismo , Pericitos/metabolismo , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Retina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Glucose/metabolismo , Células Cultivadas , Diabetes Mellitus/metabolismo
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732109

RESUMO

Adipose-derived mesenchymal stem cells (ASCs) are adult multipotent stem cells, able to differentiate toward neural elements other than cells of mesodermal lineage. The aim of this research was to test ASC neural differentiation using melatonin combined with conditioned media (CM) from glial cells. Isolated from the lipoaspirate of healthy donors, ASCs were expanded in a basal growth medium before undergoing neural differentiation procedures. For this purpose, CM obtained from olfactory ensheathing cells and from Schwann cells were used. In some samples, 1 µM of melatonin was added. After 1 and 7 days of culture, cells were studied using immunocytochemistry and flow cytometry to evaluate neural marker expression (Nestin, MAP2, Synapsin I, GFAP) under different conditions. The results confirmed that a successful neural differentiation was achieved by glial CM, whereas the addition of melatonin alone did not induce appreciable changes. When melatonin was combined with CM, ASC neural differentiation was enhanced, as demonstrated by a further improvement of neuronal marker expression, whereas glial differentiation was attenuated. A dynamic modulation was also observed, testing the expression of melatonin receptors. In conclusion, our data suggest that melatonin's neurogenic differentiation ability can be usefully exploited to obtain neuronal-like differentiated ASCs for potential therapeutic strategies.


Assuntos
Diferenciação Celular , Melatonina , Células-Tronco Mesenquimais , Melatonina/farmacologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Humanos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Tecido Adiposo/citologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células de Schwann/citologia , Células de Schwann/metabolismo , Células de Schwann/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Adulto , Nestina/metabolismo , Nestina/genética , Proteína Glial Fibrilar Ácida/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/citologia , Neuroglia/metabolismo , Sinapsinas/metabolismo
3.
Int J Mol Sci ; 24(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36835567

RESUMO

Gap junctions (GJs) formed by connexins (Cxs) play an important role in the intercellular communication within most body tissues. In this paper, we focus on GJs and Cxs present in skeletal tissues. Cx43 is the most expressed connexin, participating in the formation of both GJs for intercellular communication and hemichannels (HCs) for communication with the external environment. Through GJs in long dendritic-like cytoplasmic processes, osteocytes embedded in deep lacunae are able to form a functional syncytium not only with neighboring osteocytes but also with bone cells located at the bone surface, despite the surrounding mineralized matrix. The functional syncytium allows a coordinated cell activity through the wide propagation of calcium waves, nutrients and anabolic and/or catabolic factors. Acting as mechanosensors, osteocytes are able to transduce mechanical stimuli into biological signals that spread through the syncytium to orchestrate bone remodeling. The fundamental role of Cxs and GJs is confirmed by a plethora of investigations that have highlighted how up- and downregulation of Cxs and GJs critically influence skeletal development and cartilage functions. A better knowledge of GJ and Cx mechanisms in physiological and pathological conditions might help in developing therapeutic approaches aimed at the treatment of human skeletal system disorders.


Assuntos
Conexinas , Junções Comunicantes , Humanos , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Osso e Ossos/metabolismo , Comunicação Celular , Osteócitos/metabolismo
4.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674425

RESUMO

Diabetic retinopathy (DR) is characterized by morphologic and metabolic alterations in endothelial cells (ECs) and pericytes (PCs) of the blood-retinal barrier (BRB). The loss of interendothelial junctions, increased vascular permeability, microaneurysms, and finally, EC detachment are the main features of DR. In this scenario, a pivotal role is played by the extensive loss of PCs. Based on previous results, the aim of this study was to assess possible beneficial effects exerted by adipose mesenchymal stem cells (ASCs) and their pericyte-like differentiated phenotype (P-ASCs) on human retinal endothelial cells (HRECs) in high glucose conditions (25 mM glucose, HG). P-ASCs were more able to preserve BRB integrity than ASCs in terms of (a) increased transendothelial electrical resistance (TEER); (b) increased expression of adherens junction and tight junction proteins (VE-cadherin and ZO-1); (c) reduction in mRNA levels of inflammatory cytokines TNF-α, IL-1ß, and MMP-9; (d) reduction in the angiogenic factor VEGF and in fibrotic TGF-ß1. Moreover, P-ASCs counteracted the HG-induced activation of the pro-inflammatory phospho-ERK1/2/phospho-cPLA2/COX-2 pathway. Finally, crosstalk between HRECs and ASCs or P-ASCs based on the PDGF-B/PDGFR-ß axis at the mRNA level is described herein. Thus, P-ASCs might be considered valuable candidates for therapeutic approaches aimed at countering BRB disruption in DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Células-Tronco Mesenquimais , Humanos , Retinopatia Diabética/metabolismo , Pericitos/metabolismo , Células Endoteliais/metabolismo , Retina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Barreira Hematorretiniana/metabolismo , Glucose/metabolismo , RNA Mensageiro/metabolismo , Diabetes Mellitus/metabolismo
5.
J Cell Physiol ; 237(1): 239-257, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34435361

RESUMO

Adult stem cells are fundamental to maintain tissue homeostasis, growth, and regeneration. They reside in specialized environments called niches. Following activating signals, they proliferate and differentiate into functional cells that are able to preserve tissue physiology, either to guarantee normal turnover or to counteract tissue damage caused by injury or disease. Multiple interactions occur within the niche between stem cell-intrinsic factors, supporting cells, the extracellular matrix, and signaling pathways. Altogether, these interactions govern cell fate, preserving the stem cell pool, and regulating stem cell proliferation and differentiation. Based on their response to body needs, tissues can be largely classified into three main categories: tissues that even in normal conditions are characterized by an impressive turnover to replace rapidly exhausting cells (blood, epidermis, or intestinal epithelium); tissues that normally require only a basal cell replacement, though able to efficiently respond to increased tissue needs, injury, or disease (skeletal muscle); tissues that are equipped with less powerful stem cell niches, whose repairing ability is not able to overcome severe damage (heart or nervous tissue). The purpose of this review is to describe the main characteristics of stem cell niches in these different tissues, highlighting the various components influencing stem cell activity. Although much has been done, more work is needed to further increase our knowledge of niche interactions. This would be important not only to shed light on this fundamental chapter of human physiology but also to help the development of cell-based strategies for clinical therapeutic applications, especially when other approaches fail.


Assuntos
Células-Tronco Adultas , Nicho de Células-Tronco , Adulto , Diferenciação Celular/fisiologia , Homeostase/fisiologia , Humanos , Células-Tronco/metabolismo
6.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499544

RESUMO

Neurodegenerative disorders are characterized by the progressive loss of central and/or peripheral nervous system neurons. Within this context, neuroinflammation comes up as one of the main factors linked to neurodegeneration progression. In fact, neuroinflammation has been recognized as an outstanding factor for Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). Interestingly, neuroinflammatory diseases are characterized by dramatic changes in the epigenetic profile, which might provide novel prognostic and therapeutic factors towards neuroinflammatory treatment. Deep changes in DNA and histone methylation, along with histone acetylation and altered non-coding RNA expression, have been reported at the onset of inflammatory diseases. The aim of this work is to review the current knowledge on this field.


Assuntos
Histonas , Doenças Neurodegenerativas , Humanos , Histonas/metabolismo , Doenças Neuroinflamatórias , Epigênese Genética , Epigenômica , Doenças Neurodegenerativas/genética
7.
Histochem Cell Biol ; 156(1): 35-46, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33728539

RESUMO

The influences of ghrelin on neural differentiation of adipose-derived mesenchymal stem cells (ASCs) were investigated in this study. The expression of typical neuronal markers, such as protein gene product 9.5 (PGP9.5) and Microtubule Associated Protein 2 (MAP2), as well as glial Fibrillary Acid Protein (GFAP) as a glial marker was evaluated in ASCs in different conditions. In particular, 2 µM ghrelin was added to control ASCs and to ASCs undergoing neural differentiation. For this purpose, ASCs were cultured in Conditioned Media obtained from Olfactory Ensheathing cells (OEC-CM) or from Schwann cells (SC-CM). Data on marker expression were gathered after 1 and 7 days of culture by fluorescence immunocytochemistry and flow cytometry. Results show that only weak effects were induced by the addition of only ghrelin. Instead, dynamic ghrelin-induced modifications were detected on the increased marker expression elicited by glial conditioned media. In fact, the combination of ghrelin and conditioned media consistently induced a further increase of PGP9.5 and MAP2 expression, especially after 7 days of treatment. The combination of ghrelin with SC-CM produced the most evident effects. Weak or no modifications were found on conditioned medium-induced GFAP increases. Observations on the ghrelin receptor indicate that its expression in control ASCs, virtually unchanged by the addition of only ghrelin, was considerably increased by CM treatment. These increases were enhanced by combining ghrelin and CM treatment, especially at 7 days. Overall, it can be assumed that ghrelin favors a neuronal rather than a glial ASC differentiation.


Assuntos
Tecido Adiposo/metabolismo , Grelina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neurônios/metabolismo , Tecido Adiposo/efeitos dos fármacos , Adulto , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Neurônios/efeitos dos fármacos
8.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925714

RESUMO

A pericyte-like differentiation of human adipose-derived mesenchymal stem cells (ASCs) was tested in in vitro experiments for possible therapeutic applications in cases of diabetic retinopathy (DR) to replace irreversibly lost pericytes. For this purpose, pericyte-like ASCs were obtained after their growth in a specific pericyte medium. They were then cultured in high glucose conditions to mimic the altered microenvironment of a diabetic eye. Several parameters were monitored, especially those particularly affected by disease progression: cell proliferation, viability and migration ability; reactive oxygen species (ROS) production; inflammation-related cytokines and angiogenic factors. Overall, encouraging results were obtained. In fact, even after glucose addition, ASCs pre-cultured in the pericyte medium (pmASCs) showed high proliferation rate, viability and migration ability. A considerable increase in mRNA expression levels of the anti-inflammatory cytokines transforming growth factor-ß1 (TGF-ß1) and interleukin-10 (IL-10) was observed, associated with reduction in ROS production, and mRNA expression of pro-inflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α), and angiogenic factors. Finally, a pmASC-induced better organization of tube-like formation by retinal endothelial cells was observed in three-dimensional co-culture. The pericyte-like ASCs obtained in these experiments represent a valuable tool for the treatment of retinal damages occurring in diabetic patients.


Assuntos
Glucose/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Pericitos/metabolismo , Tecido Adiposo/metabolismo , Adulto , Técnicas de Cultura de Células/métodos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Citocinas/metabolismo , Retinopatia Diabética/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Itália , Células-Tronco Mesenquimais/metabolismo , Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo
9.
Mol Biol Rep ; 47(12): 9951-9958, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33141287

RESUMO

Adipose-derived stem cells (ASCs) represent a valuable tool for regenerative medicine being able to differentiate toward several cell lines, such as adipocytes, chondrocytes and osteocytes. During ASC adipogenic differentiation, changes in connexin (Cx) expression were evaluated in the present study. Three different Cxs were investigated: Cx43, Cx32 and Cx31.9. Cx43 is the most abundant in human tissues, Cx32 is prevalently found in nervous tissue and Cx31.9 is found at the myocardial level. Human ASCs undergoing adipogenic differentiation were isolated from raw lipoaspirate and characterized as mesenchymal stem cells. After multiple days of culture (1, 7, 14, 21 and 28 days), adipogenic differentiation was assessed by Oil Red O staining and Acetyl-CoA carboxylase (ACC) levels by western blotting. Cx expression was evaluated by western blotting at the same time points. In treated ASCs, lipidic vacuoles were detected from day 7 of treatment. Their number and size progressively increased over the entire period of observation. A parallel increase of ACC expression was also found. Lower levels of Cx expression were detected during adipogenic differentiation. Such decreases were particularly evident for Cx32, already after the first day of treatment. Cx31.9 and Cx43 also decreased, but starting from day 7. Our results suggest that ASCs may initially be equipped with a variety of Cxs, which is not surprising assuming their multipotential differentiation ability. Although some Cxs may be selectively enhanced depending on specific induction strategies toward different tissues, they seem markedly downregulated during adipogenic differentiation.


Assuntos
Conexina 43/metabolismo , Conexinas/metabolismo , Células-Tronco Mesenquimais , Adipogenia , Adulto , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Proteína beta-1 de Junções Comunicantes
10.
J Cell Physiol ; 234(3): 1978-1986, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30317595

RESUMO

The study of strial pericytes has gained great interest as they are pivotal for the physiology of stria vascularis. To provide an easily accessible in vitro model, here we described a growth medium-based approach to obtain and cultivate primary bovine cochlear pericytes (BCP) from the stria vascularis of explanted bovine cochleae. We obtained high-quality pericytes in 8-10 days with a > 90% purity after the second passage. Immunocytochemical analysis showed a homogeneous population of cells expressing typical pericyte markers, such as neural/glial antigen 2 (NG2), platelet-derived growth factor receptorß (PDGFRß), α-smooth muscle actin (α-SMA), and negative for the endothelial marker von Willebrand factor. When challenged with tumor necrosis factor or lipopolysaccharide, BCP changed their shape, similarly to human retinal pericytes (HRPC). The sensitivity of BCP to ototoxic drugs was evaluated by challenging with cisplatin or gentamicin for 48 hr. Compared to human retinal endothelial cells and HRPC, cell viability of BCP was significantly lower ( p < 0.05) after the treatment with gentamicin or cisplatin. These data indicate that our protocol provides a simple and reliable method to obtain highly pure strial BCP. Furthermore, BCP are suitable to assess the safety profile of molecules which supposedly exert ototoxic activity, and may represent a valid alternative to in vivo tests.


Assuntos
Cóclea/citologia , Pericitos/citologia , Estria Vascular/citologia , Actinas/metabolismo , Animais , Antígenos/metabolismo , Biomarcadores/metabolismo , Bovinos , Técnicas de Cultura de Células/métodos , Sobrevivência Celular , Cisplatino/toxicidade , Cóclea/efeitos dos fármacos , Cóclea/metabolismo , Meios de Cultura , Avaliação Pré-Clínica de Medicamentos/métodos , Gentamicinas/toxicidade , Técnicas In Vitro , Modelos Biológicos , Ototoxicidade/etiologia , Ototoxicidade/metabolismo , Ototoxicidade/patologia , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Proteoglicanas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Estria Vascular/efeitos dos fármacos , Estria Vascular/metabolismo
11.
Eur J Nutr ; 58(2): 565-581, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29450729

RESUMO

PURPOSE: Osteoarthitis (OA) leads to progressive loss of articular cartilage, pain and joint disability. An acute injury constitutes an important risk factor for early OA, determining an inflammatory process responsible of cartilage degeneration and muscle atrophy, due to the joint pain and immobility. The study aims to assess the effects of conjugation of physical activity and diet enriched by olive tree compounds [extra virgin olive oil (EVOO) and olive leaf extract (OLE)], on the musculoskeletal system in OA rat model. METHODS: OA was induced by anterior cruciate ligament transection and confirmed by Mankin and OARSI scores. Rats were subjected to physical activity on treadmill 5 days a week for 10 min daily and fed with experimental diets (standard diet enriched with Sicilian EVOO, Tunisian EVOO and Tunisian EVOO-OLE) for 12 weeks. Immunohistochemistry was used to evaluate IL-6 and lubricin expression in cartilage tissue and ELISA was used to quantify these proteins in serum at different time points. Histology and histomorphometry analysis were done to valuate liver steatosis, muscle atrophy and cartilage pathological changes. RESULTS: Compared to the OA group, the experimental groups showed general increased lubricin and decreased IL-6 expression, significant muscle hypertrophy and no signs of liver steatosis, suggesting the beneficial effects of physical activity coupled with EVOO-enriched diets on rat articular cartilage. Interestingly, the best result was shown for Sicilian EVOO-enriched diet. CONCLUSION: In conclusion, the conjugation of physical activity and EVOO-enriched diet determines a significant articular cartilage recovery process in early OA.


Assuntos
Dieta Mediterrânea , Fígado Gorduroso/terapia , Atrofia Muscular/terapia , Olea , Azeite de Oliva/farmacologia , Osteoartrite/terapia , Condicionamento Físico Animal , Animais , Cartilagem Articular , Modelos Animais de Doenças , Masculino , Azeite de Oliva/administração & dosagem , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
12.
J Cell Physiol ; 233(5): 3982-3999, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28926091

RESUMO

Mesenchymal stem cells (MSCs) can differentiate into not only cells of mesodermal lineages, but also into endodermal and ectodermal derived elements, including neurons and glial cells. For this reason, MSCs have been extensively investigated to develop cell-based therapeutic strategies, especially in pathologies whose pharmacological treatments give poor results, if any. As in the case of irreversible neurological disorders characterized by progressive neuronal death, in which behavioral and cognitive functions of patients inexorably decline as the disease progresses. In this review, we focus on the possible functional role exerted by MSCs in the treatment of some disabling neurodegenerative disorders such as Alzheimer's Disease, Amyotrophic Lateral Sclerosis, Huntington's Disease, and Parkinson's Disease. Investigations have been mainly performed in vitro and in animal models by using MSCs generally originated from umbilical cord, bone marrow, or adipose tissue. Positive results obtained have prompted several clinical trials, the number of which is progressively increasing worldwide. To date, many of them have been primarily addressed to verify the safety of the procedures but some improvements have already been reported, fortunately. Although the exact mechanisms of MSC-induced beneficial activities are not entirely defined, they include neurogenesis and angiogenesis stimulation, antiapoptotic, immunomodulatory, and anti-inflammatory actions. Most effects would be exerted through their paracrine expression of neurotrophic factors and cytokines, mainly delivered at damaged regions, given the innate propensity of MSCs to home to injured sites. Hopefully, in the near future more efficacious cell-replacement therapies will be developed to substantially restore disease-disrupted brain circuitry.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Transplante de Células-Tronco Mesenquimais , Doenças Neurodegenerativas/terapia , Neurogênese/fisiologia , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/terapia , Esclerose Lateral Amiotrófica/fisiopatologia , Esclerose Lateral Amiotrófica/terapia , Humanos , Doença de Huntington/patologia , Doença de Huntington/terapia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/transplante , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Cordão Umbilical/transplante
13.
J Cell Physiol ; 233(10): 7091-7100, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29737535

RESUMO

Adipose-derived mesenchymal stem cells (ASCs) may transdifferentiate into cells belonging to mesodermal, endodermal, and ectodermal lineages. The aim of this study was to verify whether a neural differentiation of ASCs could be induced by a conditioned medium (CM) obtained from cultures of olfactory ensheathing cells (OECs) or Schwann cells (SCs). ASCs were isolated from the stromal vascular fraction of adipose tissue and expanded for 2-3 passages. They were then cultured in OEC-CM or SC-CM for 24 hr or 7 days. At each stage, the cells were tested by immunocytochemistry and flow cytometer analysis to evaluate the expression of typical neural markers such as Nestin, PGP 9.5, MAP2, Synapsin I, and GFAP. Results show that both conditioned media induced similar positive effects, as all tested markers were overexpressed, especially at day 7. Overall, an evident trend toward neuronal or glial differentiation was not clearly detectable in many cases. Nevertheless, a higher tendency toward a neuronal phenotype was recognized for OEC-CM (considering MAP2 increases). On the other hand, SC-CM would be responsible for a more marked glial induction (considering GFAP increases). These findings confirm that environmental features can induce ASCs toward a neural differentiation, either as neuronal or glial elements. Rather than supplementing the culture medium by adding chemical agents, a "more physiological" condition was obtained here by means of soluble factors (cytokines/growth factors) likely released by glial cells. This culture strategy may provide valuable information in the development of cell-based therapeutic approaches for pathologies affecting the central/peripheral nervous system.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Neuroglia/efeitos dos fármacos , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Animais , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Nestina/metabolismo , Neuroglia/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Células de Schwann/efeitos dos fármacos , Células de Schwann/fisiologia
14.
Pharm Dev Technol ; 21(6): 664-71, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25946073

RESUMO

This study aimed at evaluating whether derivatization of luteinizing hormone-releasing hormone (LHRH) peptide with an amphiphilic lipoamino acid moiety could allow, along with other technological and/or pharmacokinetic advantages, to improve its encapsulation in liposomes, potentially driving its further body distribution and cellular uptake. Experimental data confirmed that a lipophilic derivative of LHRH was efficiently incorporated in various liposomal systems, differing in lipid composition and surface charge, and obtained using different methods of production. Incubation of liposomes, loaded with a fluorescent derivative of the LHRH prodrug, with NCTC keratinocytes or Caco-2 cell cultures showed that the carriers can be rapidly internalized. Conversely, the internalization of the free prodrug occurred only at very high concentrations.


Assuntos
Hormônio Liberador de Gonadotropina/administração & dosagem , Hormônio Liberador de Gonadotropina/metabolismo , Pró-Fármacos/administração & dosagem , Pró-Fármacos/metabolismo , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Composição de Medicamentos , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Lipossomos
15.
Int J Mol Sci ; 16(7): 15609-24, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26184166

RESUMO

The Low-Affinity Nerve Growth Factor Receptor (LNGFR), also known as CD271, is a member of the tumor necrosis factor receptor superfamily. The CD271 cell surface marker defines a subset of multipotential mesenchymal stromal cells and may be used to isolate and enrich cells derived from bone marrow aspirate. In this study, we compare the proliferative and differentiation potentials of CD271+ and CD271- mesenchymal stromal cells. Mesenchymal stromal cells were isolated from bone marrow aspirate and adipose tissue by plastic adherence and positive selection. The proliferation and differentiation potentials of CD271+ and CD271- mesenchymal stromal cells were assessed by inducing osteogenic, adipogenic and chondrogenic in vitro differentiation. Compared to CD271+, CD271- mesenchymal stromal cells showed a lower proliferation rate and a decreased ability to give rise to osteocytes, adipocytes and chondrocytes. Furthermore, we observed that CD271+ mesenchymal stromal cells isolated from adipose tissue displayed a higher efficiency of proliferation and trilineage differentiation compared to CD271+ mesenchymal stromal cells isolated from bone marrow samples, although the CD271 expression levels were comparable. In conclusion, these data show that both the presence of CD271 antigen and the source of mesenchymal stromal cells represent important factors in determining the ability of the cells to proliferate and differentiate.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Adipogenia , Idoso , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Condrogênese , Feminino , Humanos , Imuno-Histoquímica , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Osteogênese , Fenótipo
16.
Cell Prolif ; 57(6): e13606, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38454614

RESUMO

Glioblastoma (GBM), a WHO grade IV glioma, is a malignant primary brain tumour for which combination of surgery, chemotherapy and radiotherapy is the first-line approach despite adverse effects. Tumour microenvironment (TME) is characterized by an interplay of cells and soluble factors holding a critical role in neoplastic development. Significant pathophysiological changes have been found in GBM TME, such as glia activation and oxidative stress. Microglia play a crucial role in favouring GBM growth, representing target cells of immune escape mechanisms. Our study aims at analysing radiation-induced effects in modulating intercellular communication and identifying the basis of protective mechanisms in radiation-naïve GBM cells. Tumour cells were treated with conditioned media (CM) derived from 0, 2 or 15 Gy irradiated GBM cells or 0, 2 or 15 Gy irradiated human microglia. We demonstrated that irradiated microglia promote an increase of GBM cell lines proliferation through paracrine signalling. On the contrary, irradiated GBM-derived CM affect viability, triggering cell death mechanisms. In addition, we investigated whether these processes involve mitochondrial mass, fitness and oxidative phosphorylation and how GBM cells respond at these induced alterations. Our study suggests that off-target radiotherapy modulates microglia to support GBM proliferation and induce metabolic modifications.


Assuntos
Neoplasias Encefálicas , Proliferação de Células , Glioblastoma , Microglia , Microambiente Tumoral , Humanos , Glioblastoma/radioterapia , Glioblastoma/patologia , Glioblastoma/metabolismo , Microglia/metabolismo , Microglia/patologia , Microglia/efeitos da radiação , Proliferação de Células/efeitos da radiação , Linhagem Celular Tumoral , Meios de Cultivo Condicionados/farmacologia , Microambiente Tumoral/efeitos da radiação , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/metabolismo , Sobrevivência Celular/efeitos da radiação , Mitocôndrias/metabolismo , Mitocôndrias/efeitos da radiação
17.
J Cell Physiol ; 228(11): 2109-18, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23589068

RESUMO

Olfactory ensheathing cells (OECs) are known to be capable of continuous neurogenesis throughout lifetime and are a source of multiple trophic factors important in central nervous system regeneration. B104 neuroblastoma cells are recognized to induce differentiation of neural stem cells into oligodendrocyte precursor cells. Therefore, the aim of this study was to verify if conditioned medium (CM) obtained from OECs or B104 cells was capable of inducing differentiation of adipose tissue-derived mesenchymal stem cells (AT-MSCs) to a neuronal phenotype. In order to this goal, immunocytochemical procedures and flow cytometry analysis were used and some neural markers, as nestin, protein gene product 9.5 (PGP 9.5), microtubule-associated protein 2 (MAP2), glial fibrillary acidic protein (GFAP), and neuron cell surface antigen (A2B5) were examined 24 h and 7 days after the treatment. The results showed that both OECs- or B104-CM treated AT-MSCs express markers of progenitor and mature neurons (nestin, PGP 9.5 and MAP2) in time-dependent manner, display morphological features resembling neuronal cells, and result negative for GFAP and A2B5, astrocyte and oligodendrocyte markers, respectively. This study demonstrated that AT-MSCs can be influenced by the environment, indicating that these cells can respond to environmental cues also versus a neuronal phenotype.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Mesenquimais/citologia , Neuroblastoma/patologia , Neurônios/citologia , Bulbo Olfatório/citologia , Adulto , Animais , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Feminino , Citometria de Fluxo , Humanos , Imunofenotipagem , Masculino , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Ratos , Adulto Jovem
18.
Lab Invest ; 93(5): 566-76, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23439433

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive fibroproliferative disease whose molecular pathogenesis remains unclear. In a recent paper, we demonstrated a key role for the PI3K pathway in both proliferation and differentiation into myofibroblasts of normal human lung fibroblasts treated with TGF-ß. In this research, we assessed the expression of class I PI3K p110 isoforms in IPF lung tissue as well as in tissue-derived fibroblast cell lines. Moreover, we investigated the in vitro effects of the selective inhibition of p110 isoforms on IPF fibroblast proliferation and fibrogenic activity. IHC was performed on normal and IPF lung tissue. Expression levels of PI3K p110 isoforms were evaluated by western blot and flow cytometry analysis. Fibroblast cell lines were established from both normal and IPF tissue and the effects of selective pharmacological inhibition as well as specific gene silencing by small interfering RNAs were studied in vitro. No significant differences between normal and IPF tissue/tissue-derived fibroblasts were observed for the expression of PI3K p110 α, ß and δ isoforms whereas p110γ was more greatly expressed in both IPF lung homogenates and ex vivo fibroblast cell lines. Myofibroblasts and bronchiolar basal cells in IPF lungs exhibited strong immunoreactivity for p110γ. Positive staining for the markers of proliferation proliferating cell nuclear antigen and cyclin D1 was also shown in cells of fibrolastic foci. Furthermore, both p110γ pharmacological inhibition and gene silencing were able to significantly inhibit proliferation rate as well as α-SMA expression in IPF fibroblasts. Our data suggest that PI3K p110γ isoform may have an important role in the etio-pathology of IPF and can be a specific pharmacological target.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/biossíntese , Fibroblastos/enzimologia , Fibrose Pulmonar Idiopática/enzimologia , Adulto , Processos de Crescimento Celular/fisiologia , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Colágeno/química , Ciclina D1/metabolismo , Feminino , Fibroblastos/citologia , Inativação Gênica , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Imuno-Histoquímica , Pulmão/química , Pulmão/citologia , Masculino , Pessoa de Meia-Idade , Miofibroblastos/citologia , Miofibroblastos/enzimologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Isoformas de Proteínas , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Regulação para Cima
19.
Apoptosis ; 18(5): 578-88, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23479126

RESUMO

Although the proliferation and differentiation of mesenchymal stem cells (MSCs) from adipose tissue (AT) have been widely studied, relatively little information is available on the underlying mechanism of apoptosis during the adipogenic differentiation. Thus, the aim of this study was to analyze how the expression of some apoptotic markers is affected by in vitro expansion during adipogenic differentiation of AT-MSCs. The cultures incubated or not with adipogenic medium were investigated by Western blot at 7, 14, 21, and 28 days for the production of p53, AKT, pAKT, Bax, PDCD4 and PTEN. MSCs were recognized for their immunoreactivity to MSC-specific cell types markers by immunocytochemical procedure. The effectiveness of adipogenic differentiation was assessed by staining with Sudan III and examination of adipogenic markers expression, such as PPAR-γ and FABP, at different time points by Western blot. The adipogenic differentiation medium led to the appearance, after 7 days, of larger rounded cells presenting numerous vacuoles containing lipids in which it was evident a red-orange staining, that increased in size in a time-dependent manner, parallel to an increase of the levels of expression of PPAR-γ and FABP. More than 50 % of human MSCs were fully differentiated into adipocytes within the four-week induction period. The results showed that during adipogenic differentiation of AT-MSCs the PI3K/AKT signaling pathway is activated and that p53, PTEN, PDCD4, and Bax proteins are down-regulated in time-dependent manner. Our data provide new information on the behavior of some apoptotic markers during adipogenic differentiation of AT-MSCs to apply for tissues repair and regeneration.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Proteínas Reguladoras de Apoptose/genética , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Adipócitos/citologia , Tecido Adiposo/citologia , Adulto , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Compostos Azo , Biomarcadores/metabolismo , Feminino , Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , PPAR gama/genética , PPAR gama/metabolismo , Cultura Primária de Células , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Vacúolos/metabolismo , Vacúolos/ultraestrutura
20.
Biomedicines ; 11(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37509421

RESUMO

The osteogenic and chondrogenic differentiation ability of adipose-derived mesenchymal stromal cells (ASCs) and their potential therapeutic applications in bone and cartilage defects are reported in this review. This becomes particularly important when these disorders can only be poorly treated by conventional therapeutic approaches, and tissue engineering may represent a valuable alternative. Being of mesodermal origin, ASCs can be easily induced to differentiate into chondrocyte-like and osteocyte-like elements and used to repair damaged tissues. Moreover, they can be easily harvested and used for autologous implantation. A plethora of ASC-based strategies are being developed worldwide: they include the transplantation of freshly harvested cells, in vitro expanded cells or predifferentiated cells. Moreover, improving their positive effects, ASCs can be implanted in combination with several types of scaffolds that ensure the correct cell positioning; support cell viability, proliferation and migration; and may contribute to their osteogenic or chondrogenic differentiation. Examples of these strategies are described here, showing the enormous therapeutic potential of ASCs in this field. For safety and regulatory issues, most investigations are still at the experimental stage and carried out in vitro and in animal models. Clinical applications have, however, been reported with promising results and no serious adverse effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA