Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Biol Evol ; 32(12): 3132-42, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26337550

RESUMO

The spread of farming out of the Balkans and into the rest of Europe followed two distinct routes: An initial expansion represented by the Impressa and Cardial traditions, which followed the Northern Mediterranean coastline; and another expansion represented by the LBK (Linearbandkeramik) tradition, which followed the Danube River into Central Europe. Although genomic data now exist from samples representing the second migration, such data have yet to be successfully generated from the initial Mediterranean migration. To address this, we generated the complete genome of a 7,400-year-old Cardial individual (CB13) from Cova Bonica in Vallirana (Barcelona), as well as partial nuclear data from five others excavated from different sites in Spain and Portugal. CB13 clusters with all previously sequenced early European farmers and modern-day Sardinians. Furthermore, our analyses suggest that both Cardial and LBK peoples derived from a common ancient population located in or around the Balkan Peninsula. The Iberian Cardial genome also carries a discernible hunter-gatherer genetic signature that likely was not acquired by admixture with local Iberian foragers. Our results indicate that retrieving ancient genomes from similarly warm Mediterranean environments such as the Near East is technically feasible.


Assuntos
Cultura , Emigração e Imigração , Etnicidade/genética , Fazendeiros , Genoma Humano , Agricultura , Sequência de Bases , DNA Mitocondrial/genética , Variação Genética , Genética Populacional , Haplótipos , Humanos , Itália , Região do Mediterrâneo , Análise de Sequência de DNA , Espanha , População Branca
2.
Eur J Cancer ; 198: 113506, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184928

RESUMO

BACKGROUND: Immune checkpoint inhibitors are frequently associated with the development of immunotherapy-related adverse events (irAEs). The exact etiology, including the role of environmental factors, remains incompletely understood. METHODS: We analyzed the records of 394 melanoma patients from three centers (northern and southern hemisphere). Patients had received at least one cycle of anti-PD-1/anti-CTLA-4 with a minimum follow-up of 3 months. We study the distribution and time to irAEs onset throughout the calendar year. RESULTS: 764 irAEs were recorded; the most frequent were skin rash (35%), hepatitis (32%) and colitis (30%). The irAEs incidence was the highest in autumn and winter, and the ratio for the 'number of irAEs' per 'therapies commenced' was the highest in winter and lowest in summer (2.4 and 1.7, respectively). Season-specific patterns in the time of irAEs onset were observed for pneumonitis (shorter time to onset in autumn, p = 0.025), hepatitis (shorter time to onset in spring, p = 0.016) and sarcoid-like immune reaction (shorter time to onset in autumn, p = 0.041). Season-specific patterns for early-onset irAEs were observed for hepatitis (spring, p = 0.023) and nephritis (summer, p = 0.017). Early-onset pneumonitis was more frequent in autumn-winter (p = 0.008) and early-onset nephritis in spring-summer (p = 0.004). CONCLUSIONS: Environmental factors that are associated with particular seasons may contribute to the development of certain irAEs and suggest the potential effect of environmental triggers. The identification of these factors may enhance preventive and therapeutic strategies to reduce the morbidity of irAEs.


Assuntos
Hepatite , Inibidores de Checkpoint Imunológico , Imunoterapia , Melanoma , Nefrite , Pneumonia , Humanos , Anticorpos Monoclonais/uso terapêutico , Hepatite/etiologia , Imunoterapia/efeitos adversos , Ipilimumab/efeitos adversos , Melanoma/tratamento farmacológico , Nefrite/complicações , Nefrite/tratamento farmacológico , Pneumonia/etiologia , Estações do Ano , Inibidores de Checkpoint Imunológico/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico
3.
Nat Ecol Evol ; 7(9): 1503-1514, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37500909

RESUMO

Archaic admixture has had a substantial impact on human evolution with multiple events across different clades, including from extinct hominins such as Neanderthals and Denisovans into modern humans. In great apes, archaic admixture has been identified in chimpanzees and bonobos but the possibility of such events has not been explored in other species. Here, we address this question using high-coverage whole-genome sequences from all four extant gorilla subspecies, including six newly sequenced eastern gorillas from previously unsampled geographic regions. Using approximate Bayesian computation with neural networks to model the demographic history of gorillas, we find a signature of admixture from an archaic 'ghost' lineage into the common ancestor of eastern gorillas but not western gorillas. We infer that up to 3% of the genome of these individuals is introgressed from an archaic lineage that diverged more than 3 million years ago from the common ancestor of all extant gorillas. This introgression event took place before the split of mountain and eastern lowland gorillas, probably more than 40 thousand years ago and may have influenced perception of bitter taste in eastern gorillas. When comparing the introgression landscapes of gorillas, humans and bonobos, we find a consistent depletion of introgressed fragments on the X chromosome across these species. However, depletion in protein-coding content is not detectable in eastern gorillas, possibly as a consequence of stronger genetic drift in this species.


Assuntos
Hominidae , Homem de Neandertal , Animais , Humanos , Gorilla gorilla/genética , Pan paniscus/genética , Teorema de Bayes , Hominidae/genética , Pan troglodytes , Homem de Neandertal/genética
4.
Cancer Discov ; 13(6): 1364-1385, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-36977461

RESUMO

Understanding the evolutionary pathways to metastasis and resistance to immune-checkpoint inhibitors (ICI) in melanoma is critical for improving outcomes. Here, we present the most comprehensive intrapatient metastatic melanoma dataset assembled to date as part of the Posthumous Evaluation of Advanced Cancer Environment (PEACE) research autopsy program, including 222 exome sequencing, 493 panel-sequenced, 161 RNA sequencing, and 22 single-cell whole-genome sequencing samples from 14 ICI-treated patients. We observed frequent whole-genome doubling and widespread loss of heterozygosity, often involving antigen-presentation machinery. We found KIT extrachromosomal DNA may have contributed to the lack of response to KIT inhibitors of a KIT-driven melanoma. At the lesion-level, MYC amplifications were enriched in ICI nonresponders. Single-cell sequencing revealed polyclonal seeding of metastases originating from clones with different ploidy in one patient. Finally, we observed that brain metastases that diverged early in molecular evolution emerge late in disease. Overall, our study illustrates the diverse evolutionary landscape of advanced melanoma. SIGNIFICANCE: Despite treatment advances, melanoma remains a deadly disease at stage IV. Through research autopsy and dense sampling of metastases combined with extensive multiomic profiling, our study elucidates the many mechanisms that melanomas use to evade treatment and the immune system, whether through mutations, widespread copy-number alterations, or extrachromosomal DNA. See related commentary by Shain, p. 1294. This article is highlighted in the In This Issue feature, p. 1275.


Assuntos
Neoplasias Encefálicas , Melanoma , Humanos , Melanoma/patologia , Mutação , Evolução Molecular , DNA
5.
Cancer Res ; 82(10): 1849-1857, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35476646

RESUMO

Cancer is an evolutionary process that is characterized by the emergence of multiple genetically distinct populations or clones within the primary tumor. Intratumor heterogeneity provides a substrate for the selection of adaptive clones, such as those that lead to metastasis. Comparative molecular studies of primary tumors and metastases have identified distinct genomic features associated with the development of metastases. In this review, we discuss how these insights could inform clinical decision-making and uncover rational antimetastasis treatment strategies.


Assuntos
Neoplasias , Evolução Molecular , Heterogeneidade Genética , Humanos , Mutação , Metástase Neoplásica , Neoplasias/genética , Neoplasias/patologia
6.
Front Aging ; 3: 851039, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35821807

RESUMO

The role of somatic mutations in complex diseases, including neurodevelopmental and neurodegenerative disorders, is becoming increasingly clear. However, to date, no study has shown their relation to Parkinson disease's phenotype. To explore the relevance of embryonic somatic mutations in sporadic Parkinson disease, we performed whole-exome sequencing in blood and four brain regions of ten patients. We identified 59 candidate somatic single nucleotide variants (sSNVs) through sensitive calling and a careful filtering strategy (COSMOS). We validated 27 of them with amplicon-based ultra-deep sequencing, with a 70% validation rate for the highest-confidence variants. The identified sSNVs are in genes with synaptic functions that are co-expressed with genes previously associated with Parkinson disease. Most of the sSNVs were only called in blood but were also found in the brain tissues with ultra-deep amplicon sequencing, demonstrating the strength of multi-tissue sampling designs.

7.
Sci Rep ; 11(1): 12940, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155260

RESUMO

There are increasing evidences showing the contribution of somatic genetic variants to non-cancer diseases. However, their detection using massive parallel sequencing methods still has important limitations. In addition, the relative importance and dynamics of somatic variation in healthy tissues are not fully understood. We performed high-depth whole-exome sequencing in 16 samples from patients with a previously determined pathogenic somatic variant for a primary immunodeficiency and tested different variant callers detection ability. Subsequently, we explored the load of somatic variants in the whole blood of these individuals and validated it by amplicon-based deep sequencing. Variant callers allowing low frequency read thresholds were able to detect most of the variants, even at very low frequencies in the tissue. The genetic load of somatic coding variants detectable in whole blood is low, ranging from 1 to 2 variants in our dataset, except for one case with 17 variants compatible with clonal haematopoiesis under genetic drift. Because of the ability we demonstrated to detect this type of genetic variation, and its relevant role in disorders such as primary immunodeficiencies, we suggest considering this model of gene mosaicism in future genetic studies and considering revisiting previous massive parallel sequencing data in patients with negative results.


Assuntos
Suscetibilidade a Doenças , Predisposição Genética para Doença , Variação Genética , Doenças do Sistema Imunitário/genética , Doenças do Sistema Imunitário/imunologia , Mosaicismo , Alelos , Biomarcadores , Genômica/métodos , Doenças do Sistema Imunitário/sangue , Doenças do Sistema Imunitário/diagnóstico , Mutação , Especificidade de Órgãos/genética , Reprodutibilidade dos Testes
8.
Nat Commun ; 12(1): 3116, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34035253

RESUMO

Changes in the epigenetic regulation of gene expression have a central role in evolution. Here, we extensively profiled a panel of human, chimpanzee, gorilla, orangutan, and macaque lymphoblastoid cell lines (LCLs), using ChIP-seq for five histone marks, ATAC-seq and RNA-seq, further complemented with whole genome sequencing (WGS) and whole genome bisulfite sequencing (WGBS). We annotated regulatory elements (RE) and integrated chromatin contact maps to define gene regulatory architectures, creating the largest catalog of RE in primates to date. We report that epigenetic conservation and its correlation with sequence conservation in primates depends on the activity state of the regulatory element. Our gene regulatory architectures reveal the coordination of different types of components and highlight the role of promoters and intragenic enhancers (gE) in the regulation of gene expression. We observe that most regulatory changes occur in weakly active gE. Remarkably, novel human-specific gE with weak activities are enriched in human-specific nucleotide changes. These elements appear in genes with signals of positive selection and human acceleration, tissue-specific expression, and particular functional enrichments, suggesting that the regulatory evolution of these genes may have contributed to human adaptation.


Assuntos
Elementos Facilitadores Genéticos/genética , Epigênese Genética/genética , Epigenômica/métodos , Linfócitos/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Linhagem Celular , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Evolução Molecular , Regulação da Expressão Gênica , Humanos , Linfócitos/citologia , Primatas , RNA-Seq/métodos
9.
Genome Biol ; 22(1): 92, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781308

RESUMO

BACKGROUND: Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells. RESULTS: Here, the Brain Somatic Mosaicism Network conducts a coordinated, multi-institutional study to examine the ability of existing methods to detect simulated somatic single-nucleotide variants (SNVs) in DNA mixing experiments, generate multiple replicates of whole-genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual, devise strategies to discover somatic SNVs, and apply various approaches to validate somatic SNVs. These efforts lead to the identification of 43 bona fide somatic SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28. Guided by these results, we devise best practices for calling mosaic SNVs from 250× whole-genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrate that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees. CONCLUSIONS: This study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases.


Assuntos
Encéfalo/metabolismo , Estudos de Associação Genética , Variação Genética , Alelos , Mapeamento Cromossômico , Biologia Computacional/métodos , Estudos de Associação Genética/métodos , Genômica/métodos , Células Germinativas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Especificidade de Órgãos/genética , Polimorfismo de Nucleotídeo Único
11.
Genome Biol Evol ; 8(6): 2020-30, 2016 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-27345955

RESUMO

The genus Pan is the closest genus to our own and it includes two species, Pan paniscus (bonobos) and Pan troglodytes (chimpanzees). The later is constituted by four subspecies, all highly endangered. The study of the Pan genera has been incessantly complicated by the intricate relationship among subspecies and the statistical limitations imposed by the reduced number of samples or genomic markers analyzed. Here, we present a new method to reconstruct complete mitochondrial genomes (mitogenomes) from whole genome shotgun (WGS) datasets, mtArchitect, showing that its reconstructions are highly accurate and consistent with long-range PCR mitogenomes. We used this approach to build the mitochondrial genomes of 20 newly sequenced samples which, together with available genomes, allowed us to analyze the hitherto most complete Pan mitochondrial genome dataset including 156 chimpanzee and 44 bonobo individuals, with a proportional contribution from all chimpanzee subspecies. We estimated the separation time between chimpanzees and bonobos around 1.15 million years ago (Mya) [0.81-1.49]. Further, we found that under the most probable genealogical model the two clades of chimpanzees, Western + Nigeria-Cameroon and Central + Eastern, separated at 0.59 Mya [0.41-0.78] with further internal separations at 0.32 Mya [0.22-0.43] and 0.16 Mya [0.17-0.34], respectively. Finally, for a subset of our samples, we compared nuclear versus mitochondrial genomes and we found that chimpanzee subspecies have different patterns of nuclear and mitochondrial diversity, which could be a result of either processes affecting the mitochondrial genome, such as hitchhiking or background selection, or a result of population dynamics.


Assuntos
Evolução Molecular , Genoma Mitocondrial/genética , Pan paniscus/genética , Pan troglodytes/genética , Animais , Variação Genética , Genética Populacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia
12.
Science ; 348(6231): 242-245, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25859046

RESUMO

Mountain gorillas are an endangered great ape subspecies and a prominent focus for conservation, yet we know little about their genomic diversity and evolutionary past. We sequenced whole genomes from multiple wild individuals and compared the genomes of all four Gorilla subspecies. We found that the two eastern subspecies have experienced a prolonged population decline over the past 100,000 years, resulting in very low genetic diversity and an increased overall burden of deleterious variation. A further recent decline in the mountain gorilla population has led to extensive inbreeding, such that individuals are typically homozygous at 34% of their sequence, leading to the purging of severely deleterious recessive mutations from the population. We discuss the causes of their decline and the consequences for their future survival.


Assuntos
Variação Genética , Genoma , Gorilla gorilla/genética , Endogamia , Adaptação Fisiológica , Animais , Evolução Biológica , Variações do Número de Cópias de DNA , República Democrática do Congo , Espécies em Perigo de Extinção , Feminino , Gorilla gorilla/classificação , Gorilla gorilla/fisiologia , Homozigoto , Desequilíbrio de Ligação , Masculino , Mutação , Dinâmica Populacional , Ruanda , Seleção Genética , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA