Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Elife ; 122023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37042517

RESUMO

Salmonella enterica serovar Enteritidis is one of the most frequent causes of Salmonellosis globally and is commonly transmitted from animals to humans by the consumption of contaminated foodstuffs. In the UK and many other countries in the Global North, a significant proportion of cases are caused by the consumption of imported food products or contracted during foreign travel, therefore, making the rapid identification of the geographical source of new infections a requirement for robust public health outbreak investigations. Herein, we detail the development and application of a hierarchical machine learning model to rapidly identify and trace the geographical source of S. Enteritidis infections from whole genome sequencing data. 2313 S. Enteritidis genomes, collected by the UKHSA between 2014-2019, were used to train a 'local classifier per node' hierarchical classifier to attribute isolates to four continents, 11 sub-regions, and 38 countries (53 classes). The highest classification accuracy was achieved at the continental level followed by the sub-regional and country levels (macro F1: 0.954, 0.718, 0.661, respectively). A number of countries commonly visited by UK travelers were predicted with high accuracy (hF1: >0.9). Longitudinal analysis and validation with publicly accessible international samples indicated that predictions were robust to prospective external datasets. The hierarchical machine learning framework provided granular geographical source prediction directly from sequencing reads in <4 min per sample, facilitating rapid outbreak resolution and real-time genomic epidemiology. The results suggest additional application to a broader range of pathogens and other geographically structured problems, such as antimicrobial resistance prediction, is warranted.


Assuntos
Infecções por Salmonella , Salmonella enterica , Animais , Humanos , Salmonella enteritidis/genética , Estudos Prospectivos , Infecções por Salmonella/epidemiologia , Surtos de Doenças , Aprendizado de Máquina
2.
Microbiol Spectr ; 10(3): e0211221, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35467398

RESUMO

Reviewing the genetics underlying the arms race between bacteria and bacteriophages can offer an interesting insight into the development of bacterial resistance and phage co-evolution. This study shows how the natural development of resistances to the K1F bacteriophage, a phage which targets the K1 capsule of pathogenic Escherichia coli, can come about through insertion sequences (IS). Of the K1F resistant mutants isolated, two were of particular interest. The first of these showed full resistance to K1F and was found to have disruptions to kpsE, the product of which is involved in polysialic acid translocation. The second, after showing an initial susceptibility to K1F which then developed to full resistance, had disruptions to neuC, a gene involved in one of the early steps of polysialic acid biosynthesis. Both of these mutations came with a fitness cost and produced considerable phenotypic differences in the completeness and location of the K1 capsule when compared with the wild type. Sequential treatment of these two K1F resistant mutants with T7 resulted in the production of a variety of isolates, many of which showed a renewed susceptibility to K1F, indicating that these insertion sequence mutations are reversible, as well as one isolate that developed resistance to both phages. IMPORTANCE Bacteriophages have many potential uses in industry and the clinical environment as an antibacterial control measure. One of their uses, phage therapy, is an appealing alternative to antibiotics due to their high specificity. However, as with the rise in antimicrobial resistance (AMR), it is critical to improve our understanding of how resistance develops against these viral agents. In the same way as bacteria will evolve and mutate antibiotic receptors so they can no longer be recognized, resistance to bacteriophages can come about via mutations to phage receptors, preventing phage binding and infection. We have shown that Escherichia coli will become resistant to the K1F bacteriophage via insertion element reshufflings causing null mutations to elements of the polysialic acid biosynthetic cluster. Exposure to the T7 bacteriophage then resulted in further changes in the position of these IS elements, further altering their resistance and sensitivity profiles.


Assuntos
Bacteriófagos , Proteínas de Escherichia coli , Escherichia coli , Bacteriófagos/genética , Elementos de DNA Transponíveis , Escherichia coli/genética , Escherichia coli/virologia , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Família Multigênica , Ácidos Siálicos
3.
Microb Genom ; 7(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34427554

RESUMO

Shigellosis in men who have sex with men (MSM) is caused by multidrug resistant Shigellae, exhibiting resistance to antimicrobials including azithromycin, ciprofloxacin and more recently the third-generation cephalosporins. We sequenced four blaCTX-M-27-positive MSM Shigella isolates (2018-20) using Oxford Nanopore Technologies; three S. sonnei (identified as two MSM clade 2, one MSM clade 5) and one S. flexneri 3a, to explore AMR context. All S. sonnei isolates harboured Tn7/Int2 chromosomal integrons, whereas S. flexneri 3a contained the Shigella Resistance Locus. All strains harboured IncFII pKSR100-like plasmids (67-83kbp); where present blaCTX-M-27 was located on these plasmids flanked by IS26 and IS903B, however blaCTX-M-27 was lost in S. flexneri 3a during storage between Illumina and Nanopore sequencing. IncFII AMR regions were mosaic and likely reorganised by IS26; three of the four plasmids contained azithromycin-resistance genes erm(B) and mph(A) and one harboured the pKSR100 integron. Additionally, all S. sonnei isolates possessed a large IncB/O/K/Z plasmid, two of which carried aph(3')-Ib/aph(6)-Id/sul2 and tet(A). Monitoring the transmission of mobile genetic elements with co-located AMR determinants is necessary to inform empirical treatment guidance and clinical management of MSM-associated shigellosis.


Assuntos
Proteínas de Bactérias/genética , Disenteria Bacilar/transmissão , Homossexualidade Masculina , Plasmídeos/genética , Minorias Sexuais e de Gênero , Shigella/genética , beta-Lactamases/genética , Adulto , Antibacterianos/uso terapêutico , DNA Bacteriano , Disenteria Bacilar/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Nanoporos , Shigella/classificação , Shigella sonnei/genética , Shigella sonnei/isolamento & purificação , Reino Unido , Virulência/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA