Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Brain Behav Immun ; 115: 494-504, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37967663

RESUMO

Traumatic stress is associated with both accelerated epigenetic age and increased risk for dementia. Accelerated epigenetic age might link symptoms of traumatic stress to dementia-associated biomarkers, such as amyloid-beta (Aß) proteins, neurofilament light (NFL), and inflammatory molecules. We tested this hypothesis using longitudinal data obtained from 214 trauma-exposed military veterans (85 % male, mean age at baseline: 53 years, 75 % White) who were assessed twice over the course of an average of 5.6 years. Cross-lagged panel mediation models evaluated measures of lifetime posttraumatic stress disorder and internalizing and externalizing comorbidity (assessed at Time 1; T1) in association with T1 epigenetic age (per the GrimAge algorithm) and T1 plasma markers of neuropathology along with bidirectional temporal paths between T1 and T2 epigenetic age and the plasma markers. Results revealed that a measure of externalizing comorbidity was associated with accelerated epigenetic age (ß = 0.30, p <.01), which in turn, was associated with subsequent increases in Aß-40 (ß = 0.20, p <.001), Aß-42 (ß = 0.18, p <.001), and interleukin-6 (ß = 0.18, p <.01). T1 advanced epigenetic age and the T1 neuropathology biomarkers NFL and glial fibrillary acidic protein predicted worse performance on T2 neurocognitive tasks assessing working memory, executive/attentional control, and/or verbal memory (ps = 0.03 to 0.009). Results suggest that advanced GrimAge is predictive of subsequent increases in neuropathology and inflammatory biomarkers as well as worse cognitive function, highlighting the clinical significance of this biomarker with respect to cognitive aging and brain health over time. The finding that advanced GrimAge mediated the association between psychiatric comorbidity and future neuropathology is important for understanding potential pathways to neurodegeneration and early identification of those at greatest risk.


Assuntos
Envelhecimento Cognitivo , Disfunção Cognitiva , Demência , Masculino , Humanos , Pessoa de Meia-Idade , Feminino , Estudos Longitudinais , Peptídeos beta-Amiloides , Biomarcadores , Envelhecimento
2.
Clin Epigenetics ; 16(1): 38, 2024 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431614

RESUMO

BACKGROUND: Large-scale cohort and epidemiological studies suggest that PTSD confers risk for dementia in later life but the biological mechanisms underlying this association remain unknown. This study examined this question by assessing the influences of PTSD, APOE ε4 genotypes, DNA methylation, and other variables on the age- and dementia-associated biomarkers Aß40, Aß42, GFAP, NfL, and pTau-181 measured in plasma. Our primary hypothesis was that PTSD would be associated with elevated levels of these markers. METHODS: Analyses were based on data from a PTSD-enriched cohort of 849 individuals. We began by performing factor analyses of the biomarkers, the results of which identified a two-factor solution. Drawing from the ATN research framework, we termed the first factor, defined by Aß40 and Aß42, "Factor A" and the second factor, defined by GFAP, NfL and pTau-181, "Factor TN." Next, we performed epigenome-wide association analyses (EWAS) of the two-factor scores. Finally, using structural equation modeling (SEM), we evaluated (a) the influence of PTSD, age, APOE ε4 genotype and other covariates on levels of the ATN factors, and (b) tested the mediating influence of the EWAS-significant DNAm loci on these associations. RESULTS: The Factor A EWAS identified one significant locus, cg13053408, in FANCD2OS. The Factor TN analysis identified 3 EWAS-significant associations: cg26033520 near ASCC1, cg23156469 in FAM20B, and cg15356923 in FAM19A4. The SEM showed age to be related to both factors, more so with Factor TN (ß = 0.581, p < 0.001) than Factor A (ß = 0.330, p < 0.001). Genotype-determined African ancestry was associated with lower Factor A (ß = 0.196, p < 0.001). Contrary to our primary hypothesis, we found a modest negative bivariate correlation between PTSD and the TN factor scores (r = - 0.133, p < 0.001) attributable primarily to reduced levels of GFAP (r = - 0.128, p < 0.001). CONCLUSIONS: This study identified novel epigenetic associations with ATN biomarkers and demonstrated robust age and ancestral associations that will be essential to consider in future efforts to develop the clinical applications of these tests. The association between PTSD and reduced GFAP, which has been reported previously, warrants further investigation.


Assuntos
Doença de Alzheimer , Demência , Transtornos de Estresse Pós-Traumáticos , Humanos , Epigenoma , Metilação de DNA , Apolipoproteína E4/genética , Transtornos de Estresse Pós-Traumáticos/genética , Biomarcadores , Demência/genética , Doença de Alzheimer/genética , Proteínas de Transporte/genética
3.
Behav Neurosci ; 138(2): 94-107, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38661669

RESUMO

Posttraumatic stress disorder (PTSD) is a heterogeneous disorder, and symptom severity varies over time. Neurobiological factors that predict PTSD symptoms and their chronicity remain unclear. This study investigated whether the volume of the hippocampus and its subfields, particularly cornu ammonis (CA) 1, CA3, and dentate gyrus, are associated with current PTSD symptoms and whether they predict PTSD symptom changes over 2 years. We examined clinical and structural magnetic resonance imaging measures from 252 trauma-exposed post-9/11 veterans (159 with Time 1 PTSD diagnosis) during assessments approximately 2 years apart. Automated hippocampal subfield segmentation was performed with FreeSurfer Version 7.1, producing 19 bilateral subfields. PTSD symptoms were measured at each assessment using the Clinician-Administered PTSD Scale-IV (CAPS). All models included total intracranial volume as a covariate. First, similar to previous reports, we showed that smaller overall hippocampal volume was associated with greater PTSD symptom severity at Time 1. Notably, when examining regions of interest (CA1, CA3, dentate gyrus), we found that smaller Time 1 hippocampal volumes in the bilateral CA1-body and CA2/3-body predicted decreased PTSD symptom severity at Time 2. These findings were not accounted for by combat exposure or treatment history. Additionally, both Time 1 CA1-body and CA2/3-body volume showed unique associations with changes in avoidance/numbing, but not with changes in reexperiencing or hyperarousal symptoms. This supports a more complex and nuanced relationship between hippocampal structure and PTSD symptoms, where during the posttrauma years bigger may not always mean better, and suggests that the CA1-body and CA2/3-body are important factors in the maintenance of PTSD symptoms. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Transtornos de Estresse Pós-Traumáticos , Veteranos , Transtornos de Estresse Pós-Traumáticos/diagnóstico por imagem , Transtornos de Estresse Pós-Traumáticos/patologia , Humanos , Masculino , Hipocampo/patologia , Hipocampo/diagnóstico por imagem , Adulto , Feminino , Pessoa de Meia-Idade , Tamanho do Órgão , Índice de Gravidade de Doença
4.
medRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712163

RESUMO

Importance: The X chromosome has remained enigmatic in Alzheimer's disease (AD), yet it makes up 5% of the genome and carries a high proportion of genes expressed in the brain, making it particularly appealing as a potential source of unexplored genetic variation in AD. Objectives: Perform the first large-scale X chromosome-wide association study (XWAS) of AD. Primary analyses are non-stratified, while secondary analyses evaluate sex-stratified effects. Design: Meta-analysis of genetic association studies in case-control, family-based, population-based, and longitudinal AD-related cohorts from the US Alzheimer's Disease Genetics Consortium (ADGC) and Alzheimer's Disease Sequencing Project (ADSP), the UK Biobank (UKB), the Finnish health registry (FinnGen), and the US Million Veterans Program (MVP). Risk for AD evaluated through case-control logistic regression analyses. Data were analyzed between January 2023 and March 2024. Setting: Genetic data available from high-density single-nucleotide polymorphism (SNP) microarrays and whole-genome sequencing (WGS). Summary statistics for multi-tissue expression and protein quantitative trait loci (QTL) available from published studies, enabling follow-up genetic colocalization analyses. Participants: 1,629,863 eligible participants were selected from referred and volunteer samples, of which 477,596 were excluded for analysis exclusion criteria. Number of participants who declined to participate in original studies was not available. Main Outcome and Measures: Risk for AD (odds ratio; OR) with 95% confidence intervals (CI). Associations were considered at X-chromosome-wide (P-value<1e-5) and genome-wide (P-value<5e-8) significance. Results: Analyses included 1,152,284 non-Hispanic White European ancestry subjects (57.3% females), including 138,558 cases. 6 independent genetic loci passed X-chromosome-wide significance, with 4 showing support for causal links between the genetic signal for AD and expression of nearby genes in brain and non-brain tissues. One of these 4 loci passed conservative genome-wide significance, with its lead variant centered on an intron of SLC9A7 (OR=1.054, 95%-CI=[1.035, 1.075]) and colocalization analyses prioritizing both the SLC9A7 and nearby CHST7 genes. Conclusion and Relevance: We performed the first large-scale XWAS of AD and identified the novel SLC9A7 locus. SLC9A7 regulates pH homeostasis in Golgi secretory compartments and is anticipated to have downstream effects on amyloid beta accumulation. Overall, this study significantly advances our knowledge of AD genetics and may provide novel biological drug targets.

5.
Alzheimers Res Ther ; 16(1): 143, 2024 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951900

RESUMO

BACKGROUND: Posttraumatic stress disorder (PTSD) and traumatic brain injury (TBI) are associated with self-reported problems with cognition as well as risk for Alzheimer's disease and related dementias (ADRD). Overlapping symptom profiles observed in cognitive disorders, psychiatric disorders, and environmental exposures (e.g., head injury) can complicate the detection of early signs of ADRD. The interplay between PTSD, head injury, subjective (self-reported) cognitive concerns and genetic risk for ADRD is also not well understood, particularly in diverse ancestry groups. METHODS: Using data from the U.S. Department of Veterans Affairs (VA) Million Veteran Program (MVP), we examined the relationship between dementia risk factors (APOE ε4, PTSD, TBI) and subjective cognitive concerns (SCC) measured in individuals of European (n = 140,921), African (n = 15,788), and Hispanic (n = 8,064) ancestry (EA, AA, and HA, respectively). We then used data from the VA electronic medical record to perform a retrospective survival analysis evaluating PTSD, TBI, APOE ε4, and SCC and their associations with risk of conversion to ADRD in Veterans aged 65 and older. RESULTS: PTSD symptoms (B = 0.50-0.52, p < 1E-250) and probable TBI (B = 0.05-0.19, p = 1.51E-07 - 0.002) were positively associated with SCC across all three ancestry groups. APOE ε4 was associated with greater SCC in EA Veterans aged 65 and older (B = 0.037, p = 1.88E-12). Results of Cox models indicated that PTSD symptoms (hazard ratio [HR] = 1.13-1.21), APOE ε4 (HR = 1.73-2.05) and SCC (HR = 1.18-1.37) were positively associated with risk for ADRD across all three ancestry groups. In the EA group, probable TBI also contributed to increased risk of ADRD (HR = 1.18). CONCLUSIONS: The findings underscore the value of SCC as an indicator of ADRD risk in Veterans 65 and older when considered in conjunction with other influential genetic, clinical, and demographic risk factors.


Assuntos
Apolipoproteína E4 , Demência , Transtornos de Estresse Pós-Traumáticos , Veteranos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Apolipoproteína E4/genética , Lesões Encefálicas Traumáticas/genética , Lesões Encefálicas Traumáticas/psicologia , Demência/genética , Demência/epidemiologia , Estudos Retrospectivos , Fatores de Risco , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/epidemiologia , Estados Unidos/epidemiologia
6.
Res Sq ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38410438

RESUMO

Background: Incorporating genomic data into risk prediction has become an increasingly useful approach for rapid identification of individuals most at risk for complex disorders such as PTSD. Our goal was to develop and validate Methylation Risk Scores (MRS) using machine learning to distinguish individuals who have PTSD from those who do not. Methods: Elastic Net was used to develop three risk score models using a discovery dataset (n = 1226; 314 cases, 912 controls) comprised of 5 diverse cohorts with available blood-derived DNA methylation (DNAm) measured on the Illumina Epic BeadChip. The first risk score, exposure and methylation risk score (eMRS) used cumulative and childhood trauma exposure and DNAm variables; the second, methylation-only risk score (MoRS) was based solely on DNAm data; the third, methylation-only risk scores with adjusted exposure variables (MoRSAE) utilized DNAm data adjusted for the two exposure variables. The potential of these risk scores to predict future PTSD based on pre-deployment data was also assessed. External validation of risk scores was conducted in four independent cohorts. Results: The eMRS model showed the highest accuracy (92%), precision (91%), recall (87%), and f1-score (89%) in classifying PTSD using 3730 features. While still highly accurate, the MoRS (accuracy = 89%) using 3728 features and MoRSAE (accuracy = 84%) using 4150 features showed a decline in classification power. eMRS significantly predicted PTSD in one of the four independent cohorts, the BEAR cohort (beta = 0.6839, p-0.003), but not in the remaining three cohorts. Pre-deployment risk scores from all models (eMRS, beta = 1.92; MoRS, beta = 1.99 and MoRSAE, beta = 1.77) displayed a significant (p < 0.001) predictive power for post-deployment PTSD. Conclusion: Results, especially those from the eMRS, reinforce earlier findings that methylation and trauma are interconnected and can be leveraged to increase the correct classification of those with vs. without PTSD. Moreover, our models can potentially be a valuable tool in predicting the future risk of developing PTSD. As more data become available, including additional molecular, environmental, and psychosocial factors in these scores may enhance their accuracy in predicting the condition and, relatedly, improve their performance in independent cohorts.

7.
Science ; 384(6698): eadh3707, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781393

RESUMO

The molecular pathology of stress-related disorders remains elusive. Our brain multiregion, multiomic study of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) included the central nucleus of the amygdala, hippocampal dentate gyrus, and medial prefrontal cortex (mPFC). Genes and exons within the mPFC carried most disease signals replicated across two independent cohorts. Pathways pointed to immune function, neuronal and synaptic regulation, and stress hormones. Multiomic factor and gene network analyses provided the underlying genomic structure. Single nucleus RNA sequencing in dorsolateral PFC revealed dysregulated (stress-related) signals in neuronal and non-neuronal cell types. Analyses of brain-blood intersections in >50,000 UK Biobank participants were conducted along with fine-mapping of the results of PTSD and MDD genome-wide association studies to distinguish risk from disease processes. Our data suggest shared and distinct molecular pathology in both disorders and propose potential therapeutic targets and biomarkers.


Assuntos
Encéfalo , Transtorno Depressivo Maior , Loci Gênicos , Transtornos de Estresse Pós-Traumáticos , Feminino , Humanos , Masculino , Tonsila do Cerebelo/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Transtorno Depressivo Maior/genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Transtornos de Estresse Pós-Traumáticos/genética , Biologia de Sistemas , Análise da Expressão Gênica de Célula Única , Mapeamento Cromossômico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA