Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Psychiatry Res Neuroimaging ; 334: 111689, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37536046

RESUMO

An essential yet challenging task is an automatic diagnosis of attention-deficit/hyperactivity disorder (ADHD) without manual intervention. The present study emphasises utilizing structural MRI and personal characteristic (PC) data for developing an automated diagnostic system for ADHD classification. Here, an age-balanced dataset of 316 ADHD and 316 Typically Developing Children (TDC) was prepared from the publicly available dataset. We extracted volumetric features from gray matter (GM) volumes from brain regions defined by Automated Anatomical Labelling (AAL3) atlas and cortical thickness-based (CT) features using the Destrieux atlas. A set of salient features were selected independently using minimum redundancy and maximum relevance (mRMR) and ensemble feature selection (EFS) methods. Decision models were trained using five well-known classifiers: K-nearest neighbours, logistic regression, linear Support Vector Machine (SVM), radial-based SVM (RBSVM), and Random Forest. The performance of the proposed system was evaluated using accuracy, recall, and specificity with ten runs of a ten-fold cross-validation scheme. We run seven experiments by considering different combinations of features. The maximum classification accuracy of 75% was obtained with CT and PC features with RBSVM and SVM with the EFS. An increase in GM volume in fifteen brain regions and loss of cortical thickness in twenty-seven brain regions were observed.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Criança , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Encéfalo/diagnóstico por imagem , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA