Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569429

RESUMO

We demonstrate here that highly sensitive in vitro bioassays for FSH, TSH, and PTH can be set up in mouse Leydig Tumor Cells (mLTC), in addition to the normal LH/CG bioassay, after they were transfected with expression vectors encoding the corresponding Gs Protein-Coupled Receptors (GsPCR), such as FSHR, TSHR, or PTHR. Although the ß2 adrenergic receptor is also a GsPCR, its expression in mLTC led to a significant but very low cAMP response compared to those observed with FSH, TSH, or PTH. Similarly, after transfection of the GiPCR MT1 melatonin receptor, we did not observe any inhibitory effect by melatonin of the LH or hCG stimulation. Interestingly, after transfection of mLTC with the human kisspeptin receptor (hKpR), which is a GqPCR, we observed a dose-dependent synergy of 10-12-10-7 M kisspeptin variants with a fixed concentration of 0.3 nM LH or hCG. Without any exogenous receptor transfection, a 2 h preincubation with OT or AVP led to a dose-dependent cAMP response to a fixed dose of LH or hCG. Therefore, highly sensitive in vitro bioassays for various hormones and other GPCR ligands can be set up in mLTC to measure circulating concentrations in only 3-10 µL of blood or other body fluids. Nevertheless, the development of an LHRKO mLTC cell line will be mandatory to obtain strict specificity for these bioassays to eliminate potential cross-reaction with LH or CG.


Assuntos
Kisspeptinas , Receptores do LH , Camundongos , Animais , Humanos , Receptores do LH/genética , Receptores do LH/metabolismo , Kisspeptinas/metabolismo , Ligantes , AMP Cíclico/metabolismo , Transdução de Sinais , Receptores Acoplados a Proteínas G , Hormônio Foliculoestimulante/farmacologia , Hormônio Foliculoestimulante/metabolismo , Tireotropina/metabolismo , Gonadotropina Coriônica/metabolismo
2.
Cell Mol Life Sci ; 75(5): 905-919, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28975373

RESUMO

Thyroid hormone (TH) directs seasonal breeding through reciprocal regulation of TH deiodinase (Dio2/Dio3) gene expression in tanycytes in the ependymal zone of the medio-basal hypothalamus (MBH). Thyrotropin secretion by the pars tuberalis (PT) is a major photoperiod-dependent upstream regulator of Dio2/Dio3 gene expression. Long days enhance thyrotropin production, which increases Dio2 expression and suppresses Dio3 expression, thereby heightening TH signaling in the MBH. Short days appear to exert the converse effect. Here, we combined endocrine profiling and transcriptomics to understand how photoperiod and TH control the ovine reproductive status through effects on hypothalamic function. Almost 3000 genes showed altered hypothalamic expression between the breeding- and non-breeding seasons, showing gene ontology enrichment for cell signaling, epigenetics and neural plasticity. In contrast, acute switching from a short (SP) to a long photoperiod (LP) affected the expression of a much smaller core of 134 LP-responsive genes, including a canonical group previously linked to photoperiodic synchronization. Reproductive switch-off at the end of the winter breeding season was completely blocked by thyroidectomy (THX), despite a very modest effect on the hypothalamic transcriptome. Only 49 genes displayed altered expression between intact and THX ewes, including less than 10% of the LP-induced gene set. Neuroanatomical mapping showed that many LP-induced genes were expressed in the PT, independently of the TH status. In contrast, TH-sensitive seasonal genes were principally expressed in the ependymal zone. These data highlight the distinctions between seasonal remodeling effects, which appear to be largely independent of TH, and TH-dependent localised effects which are permissive for transition to the non-breeding state.


Assuntos
Reprodução/fisiologia , Hormônios Tireóideos/metabolismo , Transcriptoma , Animais , Barbitúricos/farmacologia , Estradiol/farmacologia , Feminino , Hormônio Foliculoestimulante/metabolismo , Hormônio Luteinizante/metabolismo , Ovariectomia , Fotoperíodo , Adeno-Hipófise/efeitos dos fármacos , Adeno-Hipófise/metabolismo , RNA/isolamento & purificação , RNA/metabolismo , Estações do Ano , Ovinos , Tireoidectomia , Tiroxina/metabolismo , Transcriptoma/efeitos dos fármacos , Tri-Iodotironina/metabolismo
3.
Eur J Neurosci ; 46(10): 2596-2607, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28973792

RESUMO

During mammalian embryonic development, GnRH neurones differentiate from the nasal placode and migrate through the nasal septum towards the forebrain. We previously showed that a category of glial cells, the olfactory ensheathing cells (OEC), forms the microenvironment of migrating GnRH neurones. Here, to characterize the quantitative and qualitative importance of this glial, we investigated the spatiotemporal maturation of glial cells in situ and the role of maturing glia in GnRH neurones development ex vivo. More than 90% of migrating GnRH neurones were found to be associated with glial cells. There was no change in the cellular microenvironment of GnRH neurones in the regions crossed during embryonic development as glial cells formed the main microenvironment of these neurones (53.4%). However, the phenotype of OEC associated with GnRH neurones changed across regions. The OEC progenitors immunoreactive to brain lipid binding protein formed the microenvironment of migrating GnRH neurones from the vomeronasal organ to the telencephalon and were also present in the diencephalon. However, during GnRH neurone migration, maturation of OEC to [GFAP+] state (glial fibrillary acid protein) was only observed in the nasal septum. Inducing depletion of OEC in maturation, using transgenic mice expressing herpes simplex virus thymidine kinase driven by the GFAP promoter, had no impact on neurogenesis or on triggering GnRH neurones migration in nasal explant culture. Nevertheless, depletion of [GFAP+] cells decreased GnRH neurites outgrowth by 57.4%. This study suggests that specific maturation of OEC in the nasal septum plays a role in morphological differentiation of GnRH neurones.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Neuritos/fisiologia , Neuroglia/fisiologia , Crescimento Neuronal , Neurônios/fisiologia , Bulbo Olfatório/crescimento & desenvolvimento , Animais , Movimento Celular , Camundongos , Camundongos Transgênicos , Septo Nasal/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neuroglia/metabolismo , Neurônios/metabolismo , Bulbo Olfatório/metabolismo , Técnicas de Cultura de Órgãos , Células-Tronco , Órgão Vomeronasal/crescimento & desenvolvimento
4.
Reprod Fertil Dev ; 29(12): 2479-2495, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28672116

RESUMO

Visfatin and resistin appear to interfere with reproduction in the gonads, but their potential action at the hypothalamic-pituitary level is not yet known. The aim of the present study was to investigate the mRNA and protein expression of these adipokines in murine gonadotroph cells and to analyse the effects of different concentrations of recombinant mouse visfatin and resistin (0.01, 0.1, 1 and 10ngmL-1) on LH secretion and signalling pathways in LßT2 cells and/or in primary female mouse pituitary cells. Both visfatin and resistin mRNA and protein were found in vivo in gonadotroph cells. In contrast with resistin, the primary tissue source of visfatin in the mouse was the skeletal muscle, and not adipose tissue. Visfatin and resistin both decreased LH secretion from LßT2 cells after 24h exposure of cells (P<0.03). These results were confirmed for resistin in primary cell culture (P<0.05). Both visfatin (1ngmL-1) and resistin (1ngmL-1) increased AMP-activated protein kinase α phosphorylation in LßT2 cells after 5 or 10min treatment, up to 60min (P<0.04). Extracellular signal-regulated kinase 1/2 phosphorylation was transiently increased only after 5min resistin (1ngmL-1) treatment (P<0.01). In conclusion, visfatin and resistin are expressed in gonadotroph cells and they may affect mouse female fertility by regulating LH secretion at the level of the pituitary.


Assuntos
Gonadotrofos/metabolismo , Hormônio Luteinizante/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Resistina/metabolismo , Transdução de Sinais/fisiologia , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Camundongos , Músculo Esquelético/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Fosforilação , Resistina/genética
5.
Gen Comp Endocrinol ; 254: 68-74, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28935581

RESUMO

Seasonal reproduction is under the control of gonadal steroid feedback, itself synchronized by day-length or photoperiod. As steroid action on GnRH neurons is mostly indirect and therefore exerted through interneurons, we looked for neuroanatomical interactions between kisspeptin (KP) neurons and somatostatin (SOM) neurons, two populations targeted by sex steroids, in three diencephalic areas involved in the central control of ovulation and/or sexual behavior: the arcuate nucleus (ARC), the preoptic area (POA) and the ventrolateral part of the ventromedial hypothalamus (VMHvl). KP is the most potent secretagogue of GnRH secretion while SOM has been shown to centrally inhibit LH pulsatile release. Notably, hypothalamic contents of these two neuropeptides vary with photoperiod in specific seasonal species. Our hypothesis is that SOM inhibits KP neuron activity and therefore indirectly modulate GnRH release and that this effect may be seasonally regulated. We used sections from ovariectomized estradiol-replaced ewes killed after photoperiodic treatment mimicking breeding or anestrus season. We performed triple immunofluorescent labeling to simultaneously detect KP, SOM and synapsin, a marker for synaptic vesicles. Sections from the POA and from the mediobasal hypothalamus were examined using a confocal microscope. Randomly selected KP or SOM neurons were observed in the POA and ARC. SOM neurons were also observed in the VMHvl. In both the ARC and POA, nearly all KP neurons presented numerous SOM contacts. SOM neurons presented KP terminals more frequently in the ARC than in the POA and VMHvl. Quantitative analysis failed to demonstrate major seasonal variations of KP and SOM interactions. Our data suggest a possible inhibitory action of SOM on all KP neurons in both photoperiodic statuses. On the other hand, the physiological significance of KP modulation of SOM neuron activity and vice versa remain to be determined.


Assuntos
Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurônios/metabolismo , Fotoperíodo , Ovinos/metabolismo , Somatostatina/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Contagem de Células , Feminino , Neurônios/citologia , Área Pré-Óptica/metabolismo
6.
Reproduction ; 149(5): 511-21, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25823459

RESUMO

The proportion of anoestrous ewes ovulating after exposure to a sexually active ram is variable mainly due to whether an LH surge is induced. The aim of this study was to determine the role of oestradiol (E2) in the ram-induced LH surge. In one study, we measured the plasma concentrations of E2 in ewes of different breeds before and after the 'ram effect' and related these patterns to the presence and latency of the LH surge, while another compared ovarian responses with the 'ram effect' following exposure to rams for 2 or 12 h. In all ewes, the concentration of E2 increased 2-4 h after rams were introduced and remained elevated for 14.5 ± 0.86 h. The quantity of E2 secreted before the LH surge varied among breeds as did the mean concentration of E2. The granulosa cells of IF ewes collected after 12 h exposure to rams secreted more E2 and progesterone and had higher levels of StAR than the 2 h group but in MV ewes there was no differences between these groups for any of these parameters. These results demonstrate that the LH surge induced by the rams is a result of increased E2 secretion associated with increased levels of STAR in granulosa cells and that these responses varied among breeds. The results suggest that the variable occurrence of a LH surge and ovulation may be the result of variable ovarian responses to the 'ram effect' and insensitivity of the hypothalamus to the E2-positive feedback signal.


Assuntos
Anestro/efeitos dos fármacos , Estradiol/farmacologia , Estro/fisiologia , Hormônio Luteinizante/metabolismo , Folículo Ovariano/fisiologia , Comportamento Sexual Animal/fisiologia , Ovinos/fisiologia , Animais , Estradiol/sangue , Estrogênios/sangue , Estrogênios/farmacologia , Estro/efeitos dos fármacos , Feminino , Masculino , Folículo Ovariano/citologia , Folículo Ovariano/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Ovulação/fisiologia , Progesterona/metabolismo , Taxa Secretória/efeitos dos fármacos , Comportamento Sexual Animal/efeitos dos fármacos
7.
Biol Reprod ; 90(2): 36, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24429215

RESUMO

Kisspeptin has emerged as the most potent gonadotropin-releasing hormone (GnRH) secretagogue and appears to represent the penultimate step in the central control of reproduction. In the sheep, we showed that kisspeptin could be used to manipulate gonadotropin secretion and control ovulation. Prompted by these results, we decided to investigate whether kisspeptin could be used as an ovulation-inducing agent in another photoperiodic domestic mammal, the horse. Equine kisspeptin-10 (eKp10) was administered intravenously as bolus injections or short- to long-term perfusions to Welsh pony mares, either during the anestrus season or at various stages of the cycle during the breeding season. In all the experimental conditions, eKp10 reliably increased peripheral concentrations of both luteinizing hormone and follicle-stimulating hormone. The nature of the response to eKp10 was consistent across experimental conditions and physiological states: the increase in gonadotropins was always rapid and essentially transient even when eKp10 was perfused for prolonged periods. Furthermore, eKp10 consistently failed to induce ovulation in the mare. To gain insights into the underlying mechanisms, we used acute injections or perfusions of GnRH. We also cloned the equine orthologues of the kisspeptin precursor and Kiss1r; this was justified by the facts that the current equine genome assembly predicted an amino acid difference between eKp10 and Kp10 in other species while an equine orthologue for Kiss1r was missing altogether. In light of these findings, potential reasons for the divergence in the response to kisspeptin between ewe and mare are discussed. Our data highlight that kisspeptin is not a universal ovulation-inducing agent.


Assuntos
Gonadotropinas/metabolismo , Cavalos , Kisspeptinas/administração & dosagem , Indução da Ovulação/veterinária , Ovulação/efeitos dos fármacos , Animais , Clonagem Molecular , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Cavalos/fisiologia , Kisspeptinas/genética , Kisspeptinas/metabolismo , Indução da Ovulação/métodos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/isolamento & purificação , Falha de Tratamento
8.
Reproduction ; 148(4): 403-16, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25062803

RESUMO

The first ovulation induced by male effect in sheep during seasonal anoestrus usually results in the development of a short cycle that can be avoided by progesterone priming before ram introduction. In elucidating the involvement of the hypothalamic-pituitary-gonadal axis in the occurrence of short cycles, the effects of progesterone and the time of anoestrus on the development of male-induced preovulatory follicles were investigated in anoestrous ewes using morphological, endocrine and molecular approaches. Ewes were primed with progesterone for 2 (CIDR2) or 12 days (CIDR12) and untreated ewes used as controls during early (April) and late (June) anoestrus. The duration of follicular growth and the lifespan of the male-induced preovulatory follicles were prolonged by ∼1.6 days in CIDR12 ewes compared with the controls. These changes were accompanied by a delay in the preovulatory LH and FSH surges and ovulation. Intra-follicular oestradiol concentration and mRNA levels of LHCGR and STAR in the granulosa and theca cells of the preovulatory follicles were higher in CIDR12 ewes than the control ewes. The expression of mRNA levels of CYP11A1 and CYP17A1 also increased in theca cells of CIDR12 ewes. CIDR2 ewes gave intermediate results. Moreover, ewes ovulated earlier in June than in April, without changes in the duration of follicular growth, but these effects were unrelated to the lifespan of corpus luteum. Our results give the first evidence supporting the positive effect of progesterone priming on the completion of growth and maturation of preovulatory follicles induced by male effect in seasonal anoestrous ewes, thereby preventing short cycles.


Assuntos
Anestro/efeitos dos fármacos , Fármacos para a Fertilidade Feminina/farmacologia , Folículo Ovariano/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Progesterona/farmacologia , Técnicas de Reprodução Assistida/veterinária , Anestro/genética , Anestro/metabolismo , Animais , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Estradiol/metabolismo , Feminino , Hormônio Foliculoestimulante/metabolismo , Regulação da Expressão Gênica , Inibinas/genética , Inibinas/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Folículo Ovariano/diagnóstico por imagem , Folículo Ovariano/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Mensageiro/metabolismo , Receptores do FSH/genética , Receptores do FSH/metabolismo , Receptores do LH/genética , Receptores do LH/metabolismo , Estações do Ano , Ovinos , Esteroide 17-alfa-Hidroxilase/genética , Esteroide 17-alfa-Hidroxilase/metabolismo , Fatores de Tempo , Ultrassonografia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Mol Cell Endocrinol ; 588: 112216, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556161

RESUMO

Photoperiod is the main environmental driver of seasonal responses in organisms living at temperate and polar latitudes. Other external cues such as food and temperature, and internal cues including hormones, intervene to fine-tune phasing of physiological functions to the solar year. In mammals, the medio-basal hypothalamus (MBH) is the key integrator of these cues, which orchestrates a wide array of seasonal functions, including breeding. Here, using RNAseq and RT-qPCR, we demonstrate that molecular components of the photoperiodic response previously identified in ewes are broadly conserved in does (female goats, Capra hircus), with a common core of ∼50 genes. This core group can be defined as the "MBH seasonal trancriptome", which includes key players of the pars tuberalis-tanycytes neuroendocrine retrograde pathway that governs intra-MBH photoperiodic switches of triiodothyronine (T3) production (Tshb, Eya3, Dio2 and SlcO1c1), the two histone methyltransferases Suv39H2 and Ezh2 and the secreted protein Vmo1. Prior data in ewes revealed that T3 and estradiol (E2), both key hormones for the proper timing of seasonal breeding, differentially impact the MBH seasonal transcriptome, and identified cellular and molecular targets through which these hormones might act. In contrast, information regarding the potential impact of progesterone (P4) upon the MBH transcriptome was nonexistent. Here, we demonstrate that P4 has no discernible transcriptional impact in either does or ewes. Taken together, our data show that does and ewes possess a common core set of photoperiod-responsive genes in the MBH and conclusively demonstrate that P4 is not a key regulator of the MBH transcriptome.


Assuntos
Cabras , Hipotálamo , Fotoperíodo , Progesterona , Ovinos , Transcriptoma , Animais , Feminino , Estro , Cabras/genética , Hipotálamo/metabolismo , Progesterona/metabolismo , Estações do Ano , Análise de Sequência de RNA , Ovinos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Conjuntos de Dados como Assunto
10.
J Neuroendocrinol ; 35(3): e13242, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36880357

RESUMO

Opioid peptides are well-known modulators of the central control of reproduction. Among them, dynorphin coexpressed in kisspeptin (KP) neurons of the arcuate nucleus (ARC) has been thoroughly studied for its autocrine effect on KP release through κ opioid receptors. Other studies have suggested a role for ß-endorphin (BEND), a peptide cleaved from the pro-opiomelanocortin precursor, on food intake and central control of reproduction. Similar to KP, BEND content in the ARC of sheep is modulated by day length and BEND modulates food intake in a dose-dependent manner. Because KP levels in the ARC vary with photoperiodic and metabolic status, a photoperiod-driven influence of BEND neurons on neighboring KP neurons is plausible. The present study aimed to investigate a possible modulatory action of BEND on KP neurons located in the ovine ARC. Using confocal microscopy, numerous KP appositions on BEND neurons were found but there was no photoperiodic variation of the number of these interactions in ovariectomized, estradiol-replaced ewes. By contrast, BEND terminals on KP neurons were twice as numerous under short days, in ewes having an activated gonadotropic axis, compared to anestrus ewes under long days. Injection of 5 µg BEND into the third ventricle of short-day ewes induced a significant and specific increase of activated KP neurons (16% vs. 9% in controls), whereas the percentage of overall activated (c-Fos positive) neurons, was similar between both groups. These data suggest a photoperiod-dependent influence of BEND on KP neurons of the ARC, which may influence gonadotropin-releasing hormone pulsatile secretion and inform KP neurons about metabolic status.


Assuntos
Núcleo Arqueado do Hipotálamo , Kisspeptinas , Feminino , Animais , Ovinos , Núcleo Arqueado do Hipotálamo/metabolismo , Kisspeptinas/metabolismo , beta-Endorfina/metabolismo , beta-Endorfina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo
11.
Theriogenology ; 189: 107-112, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738032

RESUMO

Kisspeptins (KPs) are the most potent stimulating neurotransmitters of GnRH release, and consequently KP administration triggers LH and/or FSH release. In small ruminants, KP or its analogs induced an LH surge followed by ovulation in both cyclic and acyclic animals, while in the mare KP only increased LH plasma levels but failed to induce ovulation. This study in jennies compares the endocrinological effects, ovulatory and pregnancy rates of the KP analog C6 and the GnRH analog buserelin acetate. The ovarian activity of nine Amiata jennies was monitored daily by transrectal ultrasound for three complete estrous cycles. Jennies in estrus were assigned, to one of three treatment groups: 50 nmol of the KP analog C6 (injected twice, 24 h apart, C6 group); 0.4 mg buserelin acetate (injected once, Bu group); and 2 mL of saline (injected once, CTRL group). Blood samples were collected at Day-1 (-24 h) Day0 (h0, before treatment), h2, h4, h6, h8, h10, h24 (before second treatment with C6), h26, h28, h30, h32, h34, h48 and every 24 h until ovulation. Jennies were inseminated once at h24 with fresh extended semen from a donkey stallion. Pregnancy diagnoses were performed 14 days after ovulation. On days 5, 10, and 14 after ovulation, for every CL the cross-sectional area (CSA) and the vascularized area (VA) were recorded by color doppler ultrasound and measured. Significantly higher plasma LH levels were found after induction between the Bu and CTRL groups at h6 and h8 (P < 0.05), while tendentially higher differences were found between the Bu/C6 groups and CTRL at h10. Five/9, 4/9, and 2/9 jennies ovulated between 24 and 48 h after induction from the Bu, C6, and CTRL groups respectively, (P > 0.05). Correlations between corpora lutea CSA and VA with serum progesterone concentration were r = 0.31, P = 0.01, r = 0.38, P = 0.01, respectively. Pregnancy rates after artificial insemination did not differ among groups (CTRL: 6/9, 66.7%; C6: 7/9, 77.8%; Bu: 6/9, 66.7%; P > 0.05). Ovulation rates after C6 treatment were comparable to that of Bu, although not different from the CTRL. Pregnancy rates were comparable to the literature in terms of fresh extended donkey semen in every group. This study suggests that stimulation of the Kp system in jennies, in contrast to findings observed in mares, induces ovulation. Further studies using higher doses and/or more animals are needed to better characterize the efficacy of C6 in jennies.


Assuntos
Equidae , Kisspeptinas , Animais , Busserrelina/farmacologia , Equidae/fisiologia , Feminino , Cavalos , Inseminação Artificial/veterinária , Kisspeptinas/farmacologia , Masculino , Ovulação , Indução da Ovulação/veterinária , Gravidez
12.
J Neuroendocrinol ; 34(10): e13198, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36168278

RESUMO

In mammals, the medio-basal hypothalamus (MBH) integrates photoperiodic and food-related cues to ensure timely phasing of physiological functions, including seasonal reproduction. The current human epidemics of obesity and associated reproductive disorders exemplifies the tight link between metabolism and reproduction. Yet, how food-related cues impact breeding at the level of the MBH remains unclear. In this respect, the sheep, which is a large diurnal mammal with a marked dual photoperiodic/metabolic control of seasonal breeding, is a relevant model. Here, we present a large-scale study in ewes (n = 120), which investigated the impact of food restriction (FRes) on the MBH transcriptome using unbiased RNAseq, followed by RT-qPCR. Few genes (~100) were impacted by FRes and the transcriptional impact was very modest (<2-fold increase or < 50% decrease for most genes). As anticipated, FRes increased expression of Npy/AgRP/LepR and decreased expression of Pomc/Cartpt, while Kiss1 expression was not impacted. Of particular interest, Eya3, Nmu and Dio2, genes involved in photoperiodic decoding within the MBH, were also affected by FRes. Finally, we also identified a handful of genes not known to be regulated by food-related cues (e.g., RNase6, HspA6, Arrdc2). In conclusion, our transcriptomics study provides insights into the impact of metabolism on the MBH in sheep, which may be relevant to human, and identifies possible molecular links between metabolism and (seasonal) reproduction.


Assuntos
Hipotálamo , Transcriptoma , Humanos , Animais , Ovinos , Feminino , Estações do Ano , Hipotálamo/metabolismo , Fotoperíodo , Reprodução/fisiologia , Mamíferos
13.
J Neuroendocrinol ; 34(4): e13121, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35355344

RESUMO

The modulation of the kisspeptin system holds promise as a treatment for human reproductive disorders and for managing livestock breeding. The design of analogs has overcome some unfavorable properties of the endogenous ligands. However, for applications requiring a prolongation of drug activity, such as ovulation induction in the ewe during the non-breeding season, additional improvement is required. To this aim, we designed and tested three formulations containing the kisspeptin analog C6. Two were based on polymeric nanoparticles (NP1 and NP2) and the third was based on hydrogels composed of a mixture of cyclodextrin polymers and dextran grafted with alkyl side chains (MD/pCD). Only the MD/pCD formulation prolonged C6 activity, as shown by monitoring luteinizing hormone (LH) plasma concentration (elevation duration 23.4 ± 6.1, 13.7 ± 4.7 and 12.0 ± 2.4 h for MD/pCD, NP1 and NP2, respectively). When compared with the free C6 (15 nmol/ewe), the formulated (MD/pCD) doses of 10, 15 and 30 nmol/ewe, but not the 90 nmol/ewe dose, provided a more gradual release of C6 as shown by an attenuated LH release during the first 6 h post-treatment. When tested during the non-breeding season without progestogen priming, only, the formulated 30 nmol/ewe dose triggered ovulation (50% of ewes). Hence, we showed that a formulation with an adapted action time would improve the efficacy of C6 with respect to inducing ovulation during the non-breeding season. This result suggests that formulations containing a kisspeptin analog might find applications in the management of livestock reproduction but also point to the possibility of their use for the treatment of some human reproductive pathologies.


Assuntos
Anestro , Kisspeptinas , Ovulação , Animais , Feminino , Kisspeptinas/farmacologia , Hormônio Luteinizante , Ovulação/efeitos dos fármacos , Reprodução , Ovinos
14.
BMC Neurosci ; 12: 76, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21801416

RESUMO

BACKGROUND: It is now widely accepted that AMP-activated protein kinase (AMPK) is a critical regulator of energy homeostasis. Recently, it has been shown to regulate circadian clocks. In seasonal breeding species such as sheep, the circadian clock controls the secretion of an endogenous rhythm of melatonin and, as a consequence, is probably involved in the generation of seasonal rhythms of reproduction. Considering this, we identified the presence of the subunits of AMPK in different hypothalamic nuclei involved in the pre- and post-pineal pathways that control seasonality of reproduction in the ewe and we investigated if the intracerebroventricular (i.c.v.) injection of two activators of AMPK, metformin and AICAR, affected the circadian rhythm of melatonin in ewes that were housed in constant darkness. In parallel the secretion of insulin was monitored as a peripheral metabolic marker. We also investigated the effects of i.c.v. AICAR on the phosphorylation of AMPK and acetyl-CoA carboxylase (ACC), a downstream target of AMPK, in brain structures along the photoneuroendocrine pathway to the pineal gland. RESULTS: All the subunits of AMPK that we studied were identified in all brain areas that were dissected but with some differences in their level of expression among structures. Metformin and AICAR both reduced (p < 0.001 and p < 0.01 respectively) the amplitude of the circadian rhythm of melatonin secretion independently of insulin secretion. The i.c.v. injection of AICAR only tended (p = 0.1) to increase the levels of phosphorylated AMPK in the paraventricular nucleus but significantly increased the levels of phosphorylated ACC in the paraventricular nucleus (p < 0.001) and in the pineal gland (p < 0.05). CONCLUSIONS: Taken together, these results suggest a potential role for AMPK on the secretion of melatonin probably acting trough the paraventricular nucleus and/or directly in the pineal gland. We conclude that AMPK may act as a metabolic cue to modulate the rhythm of melatonin secretion.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Encéfalo/fisiologia , Ritmo Circadiano/fisiologia , Melatonina/sangue , Metformina/administração & dosagem , Ribonucleotídeos/administração & dosagem , Ovinos/sangue , Aminoimidazol Carboxamida/administração & dosagem , Animais , Encéfalo/efeitos dos fármacos , Ritmo Circadiano/efeitos dos fármacos , Feminino , Infusões Intraventriculares
15.
Theriogenology ; 158: 1-7, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32916519

RESUMO

Spexin (SPX) is a recently identified peptide hormone of 14 amino acids. Interestingly, Spx and Kiss1 genes share a common ancestor gene. Considering that KISS1 peptides are key controllers of breeding in mammals and circumstantial evidence that SPX regulates gonadotropins in some fish species, we hypothesized that SPX may play a KISS1-related role in sheep. Here, we cloned the ovine Spx cDNA, performed in vivo injection and infusion of SPX (i.c.v. route, with or without concomittant KISS1 presence) and assessed a potential regulation of Spx expression by season, thyroid hormone and estradiol in the medio-basal hypothalamus of the ewe. Our data do not provide support for a role of SPX in the control of the gonadotropic axis in the ewe.


Assuntos
Hipotálamo , Kisspeptinas , Animais , Estradiol , Feminino , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Estações do Ano , Ovinos
16.
Mol Cell Endocrinol ; 512: 110825, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32422398

RESUMO

Thyroid hormone (TH) and estradiol (E2) direct seasonal switches in ovine reproductive physiology. In sheep, as in other mammals and birds, control of thyrotropin (TSH) production by the pars tuberalis (PT) links photoperiod responsiveness to seasonal breeding. PT-derived TSH governs opposite seasonal patterns of the TH deiodinases Dio2/Dio3 expression in tanycytes of the neighboring medio-basal hypothalamus (MBH), which explain the key role of TH. We recently used RNA-Seq to identify seasonal markers in the MBH and define the impact of TH. This impact was found to be quite limited, in terms of number of target genes, and very restricted with regards to neuroanatomical location, as TH specifically impacts genes expressed in tanycytes and hypothalamus, not in the PT. Here we address the impact of E2 on these seasonal markers, which are specifically expressed in either PT, tanycytes or hypothalamus. We also investigate if progesterone (P4) may be involved in timing the seasonal transition to anestrus. Our analysis provides circuit-level insights into the impact of sex steroids on the ewe seasonal breeding cycle. First, seasonal gene expression in the PT is independent of the sex steroid status. The fact that seasonal gene expression in the PT is also TH-independent strengthens the view that the PT is a circannual timer. Second, select tanycytic markers display some level of responsiveness to E2 and P4, which indicates another potential level of feedback control by sex steroids. Third, Kiss1 neurons of the arcuate nucleus are responsive to both TH and E2, which places them at the crossroads of photoperiodic transduction pathway and sex steroid feedback. This provides strong support to the concept that these Kiss1 neurons are pivotal to the long-recognized "seasonal switch in the ability of E2 to exert negative feedback", which drives seasonal breeding.


Assuntos
Ritmo Circadiano/genética , Redes Reguladoras de Genes , Estações do Ano , Comportamento Sexual Animal/fisiologia , Carneiro Doméstico/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Estradiol/sangue , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Hormônios Esteroides Gonadais/metabolismo , Melatonina/metabolismo , Ovariectomia/veterinária , Fotoperíodo , Comportamento Sexual Animal/efeitos dos fármacos , Ovinos , Carneiro Doméstico/genética
17.
Cerebrospinal Fluid Res ; 6: 9, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19653900

RESUMO

BACKGROUND: Sheep are seasonal breeders. The key factor governing seasonal changes in the reproductive activity of the ewe is increased negative feedback of estradiol at the level of the hypothalamus under long-day conditions. It has previously been demonstrated that when gonadotropin secretions are inhibited during long days, there is a higher concentration of estradiol in the cerebrospinal fluid (CSF) than during short days. This suggests an involvement of the CSF and choroid plexus in the neuroendocrine regulatory loop, but the mechanisms underlying this phenomenon remain unknown. One possible explanation of this difference in hormonal content is an effect of concentration or dilution caused by variations in CSF secretion rate. The aim of this study was thus to investigate changes in the CSF turnover rate related to light-dark cycles. METHODS: The turnover rate of the CSF was estimated by measuring the time taken for the recovery of intraventricular pressure (IVP) after removal of a moderate volume (0.5 to 2 ml) of CSF (slope in mmHg/min). The turnover rate was estimated three times in the same group of sheep: during a natural period of decreasing day-length corresponding to the initial period when gonadotropin activity is stimulated (SG1), during a long-day inhibitory period (IG), and finally during a short-day stimulatory period (SG2). RESULTS: The time taken and the speed of recovery of initial IVP differed between groups: 8 min 30 sec, 0.63 +/- 0.07 mmHg/min(SG1), 11 min 1 sec, 0.38 +/- 0.06 mmHg/min (IG) and 9 min 0 sec, 0.72 +/- 0.15 mmHg/min (SG2). Time changes of IVP differed between groups (ANOVA, p < 0.005, SG1 different from IG, p < 0.05). The turnover rate in SG2: 183.16 +/- 23.82 mul/min was not significantly different from SG1: 169. 23 +/- 51.58 mul/min (Mann-Whitney test, p = 0.41), but was significantly different from IG: 71.33 +/- 16.59 mul/min (p = 0.016). CONCLUSION: This study shows that the turnover rate of CSF in ewes changes according to the light-dark cycle; it is increased during short day periods and reduced in long day periods. This phenomenon could account for differences in hormonal concentrations in the CSF in this seasonal species.

18.
J Neuroendocrinol ; 31(8): e12775, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31340078

RESUMO

In mammals, melatonin is responsible for the synchronisation of seasonal cycles to the solar year. Melatonin is secreted by the pineal gland with a profile reflecting the duration of the night and acts via the pituitary pars tuberalis (PT), which in turn modulates hypothalamic thyroid hormone status via seasonal changes in the production of locally-acting thyrotrophin. Recently, we demonstrated that, in the Soay sheep, photoperiodic induction of Tshb expression and consequent downstream hypothalamic changes occur over a narrow range of photoperiods between 12 and 14 hours in duration. In the present study, we aimed to extend our molecular characterisation of this pathway, based on transcriptomic analysis of photoperiodic changes in the pituitary and hypothalamus of ovariectomised, oestradiol-implanted Ile-de-France ewes. We demonstrate that photoperiodic treatments applied before the winter solstice elicit two distinctive modes of accelerated reproductive switch off compared to ewes held on a simulated natural photoperiod, with shut-down occurring markedly faster on photoperiods of 13 hours or more than on photoperiods of 12 hours and less. This pattern of response was reflected in gene expression profiles of photoperiodically sensitive markers, both in the PT (Tshb, Fam150b, Vmo1, Ezh2 and Suv39H2) and in tanycytes (Tmem252 and Dct). Unexpectedly, the expression of Dio2 in tanycytes did not show any noticeable increase in expression with lengthening photoperiods. Finally, the expression of Kiss1, the key activator of gonadotrophin-releasing hormone release, was proportionately decreased by lengthening photoperiods, in a pattern that correlated strongly with gonadotrophin suppression. These data show that stepwise increases in photoperiod lead to graded molecular responses at the level of the PT, a progressive suppression of Kiss1 in the hypothalamic arcuate nucleus and luteinising hormone/follicle-stimulating hormone release by the pituitary, despite apparently unchanged Dio2 expression in tanycytes. We hypothesise that this apparent discontinuity in the seasonal neuroendocrine response illustrates the transient nature of the thyroid hormone-mediated response to long days in the control of circannual timing.


Assuntos
Ritmo Circadiano/fisiologia , Iodeto Peroxidase/metabolismo , Sistemas Neurossecretores/metabolismo , Fotoperíodo , Ovinos/fisiologia , Animais , Feminino , Hormônio Foliculoestimulante/sangue , França , Hormônio Luteinizante/sangue , Prolactina/sangue , Reprodução/fisiologia , Estações do Ano , Ovinos/sangue , Hormônios Tireóideos/sangue , Tireotropina/sangue , Regulação para Cima , Iodotironina Desiodinase Tipo II
19.
J Comp Neurol ; 527(11): 1872-1884, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30734308

RESUMO

Gonadotropin-inhibitory hormone (GnIH) is a neuropeptide first discovered in the quail brain that is involved in the control of reproductive physiology and behaviors, and stress response. GnIH gene encodes a second peptide, GnIH-related peptide-2 (RP2), the distribution and function of which remain unknown. We therefore studied GnIH-RP2 distribution by immunohistochemistry using a novel antibody capable of discriminating between GnIH and GnIH-RP2. The overall distribution of GnIH-RP2 is similar to that of GnIH. The vast majority of labeled neurons is located in the paraventricular nucleus (PVN) of the hypothalamus. Labeling of fibers is conspicuous in the diencephalon, but present also in the mesencephalon and telencephalon. Several regions involved in the control of reproduction and stress response (the PVN, septum, bed nucleus of the stria terminalis and nucleus commissura pallii) showed a dense network of immunolabeled fibers. To investigate the potential function of GnIH-RP2 we compared its expression in two quail lines genetically selected for divergence in their emotional reactivity. A quantitative analysis in the above-mentioned brain regions showed that the density of fibers was similar in the two lines. However, the number of GnIH-RP2 labeled neurons was higher in the median portion of the PVN in birds with higher emotional reactivity. These results point to a possible involvement of GnRH-RP2 in modulating stress response and/or emotional reactivity.


Assuntos
Encéfalo/metabolismo , Coturnix/fisiologia , Emoções/fisiologia , Hormônios Peptídicos/análise , Hormônios Peptídicos/metabolismo , Animais , Anticorpos , Mapeamento Encefálico/métodos , Imuno-Histoquímica/métodos
20.
PLoS One ; 14(3): e0214424, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30921391

RESUMO

In temperate regions goat's reproduction is seasonal. To obtain year-round breeding, hormonal treatments are currently applied. These treatments usually combine a progesterone analog with the pregnant mare serum gonadotropin (PMSG). However, their use has significant ethical and environmental drawbacks. Therefore, alternative methods to manage reproduction are needed. The discovery that in mammals the neuropeptide kisspeptin is a major positive regulator of hypothalamo-pituitary gonadal axis offered an attractive alternative strategy to control reproduction. We have previously designed a kisspeptin analog, called C6, which offers pharmacological advantages over endogenous kisspeptin. These include a longer lasting effect and enhanced activity following intramuscular injection. In the present work, we evaluated C6 effect on LH and FSH plasma concentrations in the Alpine goat breed and tested whether C6 could replace PMSG to trigger ovulation. An intramuscular injection of C6 (15 nmol/doe) given 24 hours after the end of progestogen treatment induced a surge-like peak of both LH and FSH. This was followed by an increase of progesterone, a hallmark of ovulation induction and corpus luteus formation. These results were obtained at three different time of the year: during the breeding season, the non-breeding season and at the onset of the breeding season. Furthermore, we compared the efficacy of C6 and PMSG to induce fertile ovulations when these treatments are given at the onset of the breeding season and are followed by artificial insemination. The results of this first attempt were extremely promising with gestation rates of 45% and 64% for C6 and PMSG respectively. Pending optimization of the treatment procedure in order to improve efficacy, kisspeptin analogs could be the long sought-after alternative to PMSG.


Assuntos
Fertilidade/efeitos dos fármacos , Kisspeptinas/química , Kisspeptinas/farmacologia , Ovulação/efeitos dos fármacos , Animais , Feminino , Fertilidade/fisiologia , Hormônio Foliculoestimulante/sangue , Cabras , Gonadotropinas Equinas/farmacologia , Hormônio Luteinizante/sangue , Ovulação/sangue , Reprodução/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA