Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8154, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589524

RESUMO

To study the aerodynamic performance and wind-induced response of carbon fiber-reinforced polymer (CFRP) cables, CFRP cable was designed by replacing a steel cable in a tied arch bridge based on stiffness, strength and area equivalent criteria, respectively. The aerodynamic performance and wind-induced response of CFRP cable and steel cable were studied and compared by computational fluid dynamics (CFD) model. Based on the computational results, optimal cable replacement criterion was proposed for CFRP cable to replace steel cable. In addition, surface modification was conducted by engrooving vertical symmetric (VS), vertical asymmetric (VA) and helical symmetric (HS) V-shaped grooves to improve the aerodynamic performance and wind-induced response of CFRP cable. Results showed that CFRP cables exhibited inferior aerodynamic performance and wind-induced response in most cases. However, CFRP cable based on stiffness equivalent criterion exhibited better aerodynamic performance and wind-induced vibration properties compared to the other two cable replacement criteria, thus is regarded as the optimal substitute for steel cable. In addition, HS grooves generated symmetric disturbances and caused approximately equivalent boundary layer separation delays uniformly and continuously along the cable length, thus exhibiting better effect in decreasing the reverse flow region, the maximum negative flow velocity, the vortex shedding frequency and the wind-induced vibration amplitude of CFRP cable. Hence, the stiffness equivalent criterion combined with surface modification with HS V-shaped grooves was proposed to replace steel cable with CFRP cable. This study can provide insights into the aerodynamic performance and wind-induced response of CFRP cable and instructions for cable replacement practice.

2.
PLoS One ; 17(11): e0276577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36331930

RESUMO

Mobile robot path planning has attracted much attention as a key technology in robotics research. In this paper, a reformative bat algorithm (RBA) for mobile robot path planning is proposed, which is employed as the control mechanism of robots. The Doppler effect is applied to frequency update to ameliorate RBA. When the robot is in motion, the Doppler effect can be adaptively compensated to prevent the robot from prematurely converging. In the velocity update and position update, chaotic map and dynamic disturbance coefficient are introduced respectively to enrich the population diversity and weaken the limitation of local optimum. Furthermore, Q-learning is incorporated into RBA to reasonably choose the loudness attenuation coefficient and the pulse emission enhancement coefficient to reconcile the trade-off between exploration and exploitation, while improving the local search capability of RBA. The simulation experiments are carried out in two different environments, where the success rate of RBA is 93.33% and 90%, respectively. Moreover, in terms of the results of success rate, path length and number of iterations, RBA has better robustness and can plan the optimal path in a relatively short time compared with other algorithms in this field, thus illustrating its validity and reliability. Eventually, by the aid of the Robot Operating System (ROS), the experimental results of real-world robot navigation indicate that RBA has satisfactory real-time performance and path planning effect, which can be considered as a crucial choice for dealing with path planning problems.


Assuntos
Robótica , Robótica/métodos , Inteligência Artificial , Reprodutibilidade dos Testes , Algoritmos , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA