Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Nanosci Nanotechnol ; 15(12): 10091-107, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26682455

RESUMO

In this review, we have presented the latest results and highlights on biomedical applications of a class of noble metal nanoparticles, such as gold, silver and platinum, and a class of magnetic nanoparticles, such as cobalt, nickel and iron. Their most important related compounds are also discussed for biomedical applications for treating various diseases, typically as cancers. At present, both physical and chemical methods have been proved very successful to synthesize, shape, control, and produce metal- and oxide-based homogeneous particle systems, e.g., nanoparticles and microparticles. Therefore, we have mainly focused on functional magnetic nanoparticles for nanomedicine because of their high bioadaptability to the organs inside human body. Here, bioconjugation techniques are very crucial to link nanoparticles with conventional drugs, nanodrugs, biomolecules or polymers for biomedical applications. Biofunctionalization of engineered nanoparticles for biomedicine is shown respective to in vitro and in vivo analysis protocols that typically include drug delivery, hyperthermia therapy, magnetic resonance imaging (MRI), and recent outstanding progress in sweep imaging technique with Fourier transformation (SWIFT) MRI. The latter can be especially applied using magnetic nanoparticles, such as Co-, Fe-, Ni-based nanoparticles, α-Fe2O3, and Fe3O4 oxide nanoparticles for analysis and treatment of malignancies. Therefore, this review focuses on recent results of scientists, and related research on diagnosis and treatment methods of common and dangerous diseases by biomedical engineered nanoparticles. Importantly, nanosysems (nanoparticles) or microsystems (microparticles) or hybrid micronano systems are shortly introduced into nanomedicine. Here, Fe oxide nanoparticles ultimately enable potential and applicable technologies for tumor-targeted imaging and therapy. Finally, we have shown the latest aspects of the most important Fe-based particle systems, such as Fe, α-Fe2O3, Fe3O4, Fe-Fe(x)O(y) oxide core-shell nanoparticles, and CoFe2O4-MnFe2O4 core-shell nanoparticles for nanomedicine in the efficient treatment of large tumors at low cost in near future.


Assuntos
Tecnologia Biomédica , Nanopartículas de Magnetita , Nanomedicina , Sistemas de Liberação de Medicamentos , Compostos Férricos , Humanos , Hipertermia Induzida , Imageamento por Ressonância Magnética , Magnetismo
2.
J Nanosci Nanotechnol ; 14(2): 1194-208, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24749422

RESUMO

Porous platinum, that has outstanding catalytic and electrical properties and superior resistant characteristics to corrosion, has been widely applied in chemical, petrochemical, pharmaceutical, electronic, and automotive industries. As the catalytic activity and selectivity depend on the size, shape and structure of nanomaterials, the strategies for controlling these factors of platinum nanomaterials to get excellent catalytic properties are discussed. Here, recent advances in the design and preparation of various porous platinum nanostructures are reviewed, including wet-chemical synthesis, electro-deposition, galvanic replacement reaction and de-alloying technology. The applications of various platinum nanostructures are also discussed, especially in fuel cells.


Assuntos
Cristalização/métodos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanoporos/ultraestrutura , Platina/química , Catálise , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
3.
RSC Adv ; 14(31): 22403-22407, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39010919

RESUMO

This study reports the synthesis of Cu micro-/nanosized particles through the polyol process. Cu particles were synthesized by reducing copper(ii) chloride in ethylene glycol (EG), polyvinylpyrrolidone (PVP), and potassium bromide (KBr) at low temperatures with or without the use of sodium borohydride (NaBH4).

4.
Theor Appl Genet ; 126(9): 2335-51, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23771136

RESUMO

A spring barley collection of 192 genotypes from a wide geographical range was used to identify quantitative trait loci (QTLs) for salt tolerance traits by means of an association mapping approach using a thousand SNP marker set. Linkage disequilibrium (LD) decay was found with marker distances spanning 2-8 cM depending on the methods used to account for population structure and genetic relatedness between genotypes. The association panel showed large variation for traits that were highly heritable under salt stress, including biomass production, chlorophyll content, plant height, tiller number, leaf senescence and shoot Na(+), shoot Cl(-) and shoot, root Na(+)/K(+) contents. The significant correlations between these traits and salt tolerance (defined as the biomass produced under salt stress relative to the biomass produced under control conditions) indicate that these traits contribute to (components of) salt tolerance. Association mapping was performed using several methods to account for population structure and minimize false-positive associations. This resulted in the identification of a number of genomic regions that strongly influenced salt tolerance and ion homeostasis, with a major QTL controlling salt tolerance on chromosome 6H, and a strong QTL for ion contents on chromosome 4H.


Assuntos
Genes de Plantas , Hordeum/genética , Tolerância ao Sal , Clorofila/análise , Mapeamento Cromossômico , Variação Genética , Genômica , Hordeum/química , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
5.
J Nanosci Nanotechnol ; 13(7): 4799-824, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23901503

RESUMO

In this review, we present the synthesis and characterization of Pt, Pd, Pt based bimetallic and multi-metallic nanoparticles with mixture, alloy and core-shell structure for nano-catalysis, energy conversion, and fuel cells. Here, Pt and Pd nanoparticles with modified nanostructures can be controllably synthesized via chemistry and physics for their uses as electro-catalysts. The cheap base metal catalysts can be studied in the relationship of crystal structure, size, morphology, shape, and composition for new catalysts with low cost. Thus, Pt based alloy and core-shell catalysts can be prepared with the thin Pt and Pt-Pd shell, which are proposed in low and high temperature proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs). We also present the survey of the preparation of Pt and Pd based catalysts for the better catalytic activity, high durability, and stability. The structural transformations, quantum-size effects, and characterization of Pt and Pd based catalysts in the size ranges of 30 nm (1-30 nm) are presented in electro-catalysis. In the size range of 10 nm (1-10 nm), the pure Pt catalyst shows very large surface area for electro-catalysis. To achieve homogeneous size distribution, the shaped synthesis of the polyhedral Pt nanoparticles is presented. The new concept of shaping specific shapes and morphologies in the entire nano-scale from nano to micro, such as polyhedral, cube, octahedra, tetrahedra, bar, rod, and others of the nanoparticles is proposed, especially for noble and cheap metals. The uniform Pt based nanosystems of surface structure, internal structure, shape, and morphology in the nanosized ranges are very crucial to next fuel cells. Finally, the modifications of Pt and Pd based catalysts of alloy, core-shell, and mixture structures lead to find high catalytic activity, durability, and stability for nano-catalysis, energy conversion, fuel cells, especially the next large-scale commercialization of next PEMFCs, and DMFCs.


Assuntos
Fontes de Energia Elétrica , Nanopartículas Metálicas/química , Metanol/química , Paládio/química , Platina/química , Polímeros/química , Catálise , Eletrólitos/química , Desenho de Equipamento , Análise de Falha de Equipamento
6.
RSC Adv ; 12(46): 30213-30226, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36329943

RESUMO

This work presents the preparation of bioactive glasses 70SiO2-(26 - x)CaO-4P2O5-xAg2O (with x = 0, 1, 3, 10 mol%) by a modified sol-gel method with reduced synthesis time based on hydrothermal reaction in a medium without acid or base catalysts. The synthetic materials were characterized by several physical-chemical techniques such as TG-DSC, XRD, SEM, TEM, and N2 adsorption/desorption measurement. The analysis data confirmed that the glass sample not containing Ag has a completely amorphous structure, while glass samples containing Ag exhibited a pure phase of metallic nano-silver in the glass amorphous phase. All the synthetic glasses have mesoporous structures with particle sizes of less than 30 nm. The addition of silver to the bioactive glass structure in general did not drastically reduce the specific surface areas and pore volumes of glasses as in previous studies. The bioactivity of the silver-incorporated glasses did not reduce, and even increased in the cases of bioactive glass containing 3, and 10 mol% of Ag2O. The biocompatibility of synthetic glasses with fibroblast cells (L-929) was confirmed, even with glass containing high amounts of Ag. Representatively, Ag-incorporated glass samples (sample x = 3, and x = 10) were selected to check the antibacterial ability using bacterial strain Pseudomonas aeruginosa ATCC 27853 (Pa). The obtained results indicated that these glasses exhibited good antibacterial ability to Pseudomonas aeruginosa. Thus, the synthetic method in this study proved to be a fast, environmentally friendly technique for synthesizing Ag-incorporated glass systems. The synthesized glasses show good bioactive, biocompatible, and antibacterial properties.

7.
RSC Adv ; 11(49): 30805-30826, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35498918

RESUMO

Metal oxides possess exceptional physicochemical properties which make them ideal materials for critical photocatalytic applications. However, of major interest, their photocatalytic applications are hampered by several drawbacks, consisting of prompt charge recombination of charge carriers, low surface area, inactive under visible light, and inefficient as well as expensive post-treatment recovery. The immobilization of metal oxide semiconductors on materials possessing high binding strength eliminates the impractical and costly recovery of spent catalysts in large-scale operations. Notably, the synthesis of green material (ash, clay, foundry sand, and pumice)-based metal oxides could provide a synergistic effect of the superior adsorption capacity of supporting materials and the photocatalytic activity of metal oxides. This phenomenon significantly improves the overall degradation efficiency of emerging pollutants. Inspired by the novel concept of "treating waste with waste", this contribution highlights recent advances in the utilization of natural material (clay mineral and pumice)- and waste material (ash and foundry sand)-based metal oxide nanocomposites for photodegradation of various pollutants. First, principles, mechanism, challenges towards using metal oxide as photocatalysts, and immobilization techniques are systematically summarized. Then, sources, classifications, properties, and chemical composition of green materials are briefly described. Recent advances in the utilization of green materials-based metal oxide composites for the photodegradation of various pollutants are highlighted. Finally, in the further development of green materials-derived photocatalysts, we underlined the current gaps that are worthy of deeper research in the future.

8.
RSC Adv ; 11(49): 30574-30596, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-35498934

RESUMO

Biomass-derived carbonaceous materials have recently attracted extensive interest on account of their exceptional physicochemical properties which make them promising candidates for various critical applications. Several achieved advances have been reported in the recent literature, mainly focusing on the areas of energy storage and conversion. There is no review dedicated specifically to the potential applications of biomass-derived carbon-based photocatalytic materials for environmental remediation using the visible spectral region. The excellent characteristics of carbon materials, such as good electronic conductivity, unique nanocrystal structures, inherent hydrophobicity, and the tunable surface characteristics, are fully compatible with diverse catalytic reactions including organic transformations and photocatalysis processes. Importantly, biomass-carbon-based materials are considered to be green and viable alternative photocatalysts due to their environmentally friendly and naturally abundant nature. This work aims to provide a comprehensive review of recent advances relating to the synthesis of biomass-derived carbon-based photocatalysts, focusing on their potential for the photodegradation of various pollutants. First, potential natural biomass sources, various synthetic routes, and the properties of carbon materials are systematically discussed. Recent advances in the production of biomass-carbon-based photocatalysts (including material design, mechanisms, and photocatalytic performance) are highlighted. Regarding ideas for the development of new biomass-derived photocatalysts, we outline research gaps that are worthy of further research in the future.

9.
Nanotechnology ; 21(3): 035605, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19966396

RESUMO

In this paper, Pt nanoparticles with good shapes of nanocubes and nano-octahedra and well-controlled sizes in the range 5-7 and 8-12 nm, respectively, have been successfully synthesized. The modified polyol method by adding silver nitrate and varying the molar ratio of the solutions of silver nitrate and H(2)PtCl(6) has been used to produce Pt nanoparticles of the size and shape to be controlled. The size and morphology of Pt nanoparticles have been studied by transmission electron microscopy (TEM) and high resolution TEM (HRTEM). The results have shown that their very sharp and good shapes exist in the main forms of cubic, cuboctahedral, octahedral and tetrahedral shapes directly related to the crystal nucleation along various directions of the [100] cubic, [111] octahedral and [111] tetrahedral facets during synthesis. In particular, various irregular and new shapes of Pt nanoparticles have been found. Here, it is concluded that the role of silver ions has to be considered as an important factor for promoting and controlling the development of Pt nanoparticles of [100] cubic, [111] octahedral and [111] tetrahedral facets, and also directly orienting the growth and formation of Pt nanoparticles.

10.
Nanomaterials (Basel) ; 8(4)2018 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-29601490

RESUMO

Pt-based bimetallic nanostructures have attracted a great deal of attention due to their unique nanostructures and excellent catalytic properties. In this study, we prepared porous Pt-Pd nanoparticles using an efficient, one-pot co-reduction process without using any templates or toxic reactants. In this process, Pt-Pd nanoparticles with different nanostructures were obtained by adjusting the temperature and ratio of the two precursors; and their catalytic properties for the oxidation of methanol were studied. The porous Pt-Pd nanostructures showed better electrocatalytic activity for the oxidation of methanol with a higher current density (0.67 mA/cm²), compared with the commercial Pt/C catalyst (0.31 mA/cm²). This method provides one easy pathway to economically prepare different alloy nanostructures for various applications.

11.
Nanomaterials (Basel) ; 7(11)2017 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-29156600

RESUMO

Since the initial discovery of surface-enhanced Raman scattering (SERS) in the 1970s, it has exhibited a huge potential application in many fields due to its outstanding advantages. Since the ultra-sensitive noble metallic nanostructures have increasingly exposed themselves as having some problems during application, semiconductors have been gradually exploited as one of the critical SERS substrate materials due to their distinctive advantages when compared with noble metals. ZnO is one of the most representative metallic oxide semiconductors with an abundant reserve, various and cost-effective fabrication techniques, as well as special physical and chemical properties. Thanks to the varied morphologies, size-dependent exciton, good chemical stability, a tunable band gap, carrier concentration, and stoichiometry, ZnO nanostructures have the potential to be exploited as SERS substrates. Moreover, other distinctive properties possessed by ZnO such as biocompatibility, photocatcalysis and self-cleaning, and gas- and chemo-sensitivity can be synergistically integrated and exerted with SERS activity to realize the multifunctional potential of ZnO substrates. In this review, we discuss the inevitable development trend of exploiting the potential semiconductor ZnO as a SERS substrate. After clarifying the root cause of the great disparity between the enhancement factor (EF) of noble metals and that of ZnO nanostructures, two specific methods are put forward to improve the SERS activity of ZnO, namely: elemental doping and combination of ZnO with noble metals. Then, we introduce a distinctive advantage of ZnO as SERS substrate and illustrate the necessity of reporting a meaningful average EF. We also summarize some fabrication methods for ZnO nanostructures with varied dimensions (0-3 dimensions). Finally, we present an overview of ZnO nanostructures for the versatile SERS application.

12.
Nanoscale ; 9(26): 8952-8961, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28267161

RESUMO

High magnetisation and monodisperse CoFe alloy nanoparticles are desired for a wide range of biomedical applications. However, these CoFe nanoparticles are prone to oxidation, resulting in the deterioration of their magnetic properties. In the current work, CoFe alloy nanoparticles were prepared by thermal decomposition of cobalt and iron carbonyls in organic solvents at high temperatures. Using a seeded growth method, we successfully synthesised chemically stable CoFe@Pt core/shell nanostructures. The obtained core/shell nanoparticles have high saturation magnetisation up to 135 emu g-1. The magnetisation value of the core/shell nanoparticles remains 93 emu g-1 after being exposed to air for 12 weeks. Hydrophobic CoFe@Pt nanoparticles were rendered water-dispersible by encapsulating with poly(maleic anhydride-alt-1-octadecene) (PMAO). These nanoparticles were stable in water for at least 3 months and in a wide range of pH from 2 to 11.

14.
Nanoscale ; 9(16): 5352, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28402381

RESUMO

Correction for 'High magnetisation, monodisperse and water-dispersible CoFe@Pt core/shell nanoparticles' by Ngo T. Dung et al., Nanoscale, 2017, DOI: 10.1039/c6nr09325f.

15.
Nanoscale ; 7(46): 19461-7, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26399438

RESUMO

Here we report a facile, one-pot and template-free approach to synthesize mesoporous monocrystalline Pt nanocubes with uniform shapes and sizes, in which small Pt particles with a size of ∼5 nm are three-dimensionally and periodically built up into cubes with a size of ∼50 nm. The forming process is illustrated through a novel meso-crystal self-assembly mechanism. Very interestingly, the mesoporous structures are ordered, which are thought to be beneficial to increase their catalytic activity. Compared with nonporous Pt nanoparticles and porous Pt nanoparticles without order, the ordered mesoporous Pt nanocubes exhibit a highly improved electrocatalytic ability for methanol and formic acid oxidation, and are potentially applicable as electrocatalysts for direct methanol and formic acid fuel cells. Furthermore, this approach can be used to synthesize other Pt-series metallic mesoporous nanoparticles, such as Pd.

16.
Recent Pat Nanotechnol ; 8(1): 52-61, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24261920

RESUMO

In this review, we have presented the controlled synthesis of Fe-based metal and oxide nanoparticles with large size by chemical methods. The issues of the size, shape and morphology of Fe nanoparticles are discussed in the certain ranges of practical applications in biology and medicine. The homogeneous nanosystems of Fe-based metal and oxide nanoparticles with various sizes and shapes from the nano-to-micro ranges can be used in order to meet the demands of the treatments of dangerous tumors and cancers through magnetic hyperthermia and magnetic resonance imaging (MRI). In this context, the polyhedral Fe-based metal and oxide nanoparticles having large size in the ranges from 1000 nm to 5000 nm can be potentially used in magnetic hyperthermia and MRI in the innovative drug delivery, diagnosis, treatment, and therapy of tumor and cancer diseases because of their very high bio-adaptability. We have suggested that high stability and durability of Fe-based metal and oxide nanoparticles are very crucial to recent magnetic hyperthermia and MRI technology. The roles of various Fe-based nanostructures are focused in biomedical applications of tumors and cancers diagnostics, targeted drug delivery, and magnetic hyperthermia. Finally, Fe-based, α-, ß- and γ-Fe2O3, and Fe3O4-based nanoparticles are shortly discussed in various potential applications in catalysis, biology, and medicine.


Assuntos
Biologia , Ferro/química , Medicina , Nanopartículas/química , Óxidos/química , Pesquisa , Nanopartículas/ultraestrutura
17.
J Colloid Interface Sci ; 359(2): 339-50, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21524421

RESUMO

In this paper, we presented the preparation procedure of Pt nanoparticles with the well-controlled polyhedral morphology and size by a modified polyol method using AgNO(3) in accordance with the reduction of H(2)PtCl(6) in EG at high temperature around 160°C. The methods of UV-vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and high resolution (HR) TEM measurements were used to characterize their surface morphology, size, and crystal structure. We have observed that the polyhedral Pt nanoparticles of sharp edges and corners were produced in the preferential homogenous growth as well as the formation of porous and large Pt particles by self-aggregation and assembly originating from as-prepared polyhedral Pt nanoparticles. It is most impressive to find that the arrangement of Pt nanoparticles was observed in their surface attachments, self-aggregation, random and directed surface self-assembly by the bottom-up approach. Their high electrocatalytic activity for methanol oxidation was predicted. The findings and results showed that the polyhedral Pt nanoparticle-based catalysts exhibited the high electrocatalytic activity for their potential applications in developing the efficient Pt-based catalysts for direct methanol fuel cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA