Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Environ Biol ; 34(2 Spec No): 445-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24620616

RESUMO

Phytoplankton and environmental factors were investigated quarterly from January 2011 to October 2011 in Lake Hongfeng. Results revealed that the abundanceof Pseudanabaena limnetica Lauterborn was 80% throughout the year. It was the key factor for water color change in 2011. The environmental factors such as water temperature, pH, DO were significantly related to phytoplankton abundance, but total abundance and community structure of phytoplankton were not influneed by environmental factors.


Assuntos
Lagos/química , Lagos/microbiologia , Fitoplâncton/fisiologia , China , Ecossistema , Fitoplâncton/classificação
2.
Sci Total Environ ; 826: 154002, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35231517

RESUMO

Red mud (RM) was constantly reported to immobilize soil cadmium (Cd) and reduce Cd uptake by crops, but few studies investigated whether and how RM influenced rhizobacteria communities, which was a vital factor determining Cd bioavailability and plant growth. To address this concern, high-throughput sequencing and bioinformatics were used to analyze microbiological mechanisms underlying RM application reducing Cd accumulation in edible amaranth. Based on multiple statistical models (Detrended correspondence analysis, Bray-Curtis, weighted UniFrac, and Phylogenetic tree), this study found that RM reduced Cd content in plants not only through increasing rhizosphere soil pH, but by reshaping rhizobacteria communities. Special taxa (Alphaproteobacteria, Gammaproteobacteria, Actinobacteriota, and Gemmatimonadota) associated with growth promotion, anti-disease ability, and Cd resistance of plants preferentially colonized in the rhizosphere. Moreover, RM distinctly facilitated soil microbes' proliferation and microbial biofilm formation by up-regulating intracellular organic metabolism pathways and down-regulating cell motility metabolic pathways, and these microbial metabolites/microbial biofilm (e.g., organic acid, carbohydrates, proteins, S2-, and PO43-) and microbial cells immobilized rhizosphere soil Cd via the biosorption and chemical chelation. This study revealed an important role of reshaped rhizobacteria communities acting in reducing Cd content in plants after RM application.


Assuntos
Alphaproteobacteria , Poluentes do Solo , Alphaproteobacteria/metabolismo , Bactérias/metabolismo , Cádmio/análise , Produtos Agrícolas/metabolismo , Filogenia , Rizosfera , Solo/química , Poluentes do Solo/análise
3.
Environ Pollut ; 247: 999-1008, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30823355

RESUMO

Endocrine disrupting compounds (EDCs) are becoming an increasing concern regarding bioaccumulation in aquatic biota. However, the effects of regional pollution levels and specific feeding habits on the bioaccumulation of EDCs in fish are rarely reported. 4-Nonylphenol (4-NP), bisphenol A (BPA), 4-tert-octylphenol (4-t-OP), triclocarban (TCC) and triclosan (TCS) were determined in abiotic compartments [water, sediment, suspended particulate matter (SPM)] and fish with different feeding habits along the Pearl River, China. EDCs in abiotic compartments exhibited significant (p < 0.05) spatial variations, forming five zones clustered based on site-specific EDC concentrations. 4-NP was the dominant compound, contributing 58-98% of the EDCs in fish, followed by BPA (<41%), 4-t-OP (<13%), and TCC and TCS (<4.7%). The concentrations of 4-NP and 4-t-OP, BPA, and TCC and TCS were the highest in brackish carnivorous, planktivorous, and detritivorous fish, respectively. The bioaccumulation factors (BAFs) showed that 4-NP accumulated (BAF > 5000) in all fish except for suck-feeding detritivores, while 4-t-OP and TCC accumulated in filter-feeding planktivores. The concentration of 4-NP in carnivores was significantly higher than that in detritivores, indicating the potential biomagnification of 4-NP along food chains. EDCs in sediment and SPM and those in water were most positively correlated with those in detritivores and planktivores, respectively, suggesting the potential of fish with these two feeding habits to act as bioindicators of EDC pollutants.


Assuntos
Disruptores Endócrinos/análise , Monitoramento Ambiental/métodos , Peixes , Rios/química , Poluentes Químicos da Água/análise , Animais , China
4.
Environ Pollut ; 239: 147-160, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29653305

RESUMO

Mercury (Hg) contamination in aquatic systems remains a global concern with the biomagnification of methylmercury (MeHg) through primary consumers (zooplankton) to fish and humans. In this study, total mercury (THg) and MeHg concentrations were analyzed in zooplankton collected from Baihua reservoir (Guizhou Province, China). Our results demonstrated that THg and MeHg concentrations were strongly correlated to zooplankton community and biomass composition. The THg concentration was significantly higher in micro-zooplankton compared to meso-zooplankton and macro-zooplankton, and MeHg concentration increased significantly as body size increased. Hg increases in zooplankton were influenced by the numbers of calanoid copepods and Daphnia present relative to phytoplankton and zooplankton biomass. Many zooplankton taxa in the three size-fractions were affected by THg exposure. The biomasses of Bosmina longirostris, Thermocyclops brevifurcatus, Asplanchna priodonta and Cyclops vicinus vicinus were positively correlated with Hg accumulation, while Daphnia hyalina, and Phyllodiaptomus tunguidus had a negative association. THg and MeHg bioaccumulation factors were correlated with phosphorus and total nitrogen concentration, zooplankton biomass, and chlorophyll-a concentration. Phosphorus loading was associated with increased THg and MeHg accumulation in the zooplankton highlighting biomagification with eutrophication. Chlorophyll-a levels were not correlated to THg and MeHg accumulation in zooplankton when phytoplankton densities were >107 cells L-1 and chlorophyll-a concentrations <9 µgL-1. This finding contradicts the idea of MeHg biodilution with increased algae biomass. However, changes in the phytoplankton species and biomass altered the availability of food for zooplankton, particularly micro-zooplankton and macro-zooplankton. Ultimately, the bioaccumulation of MeHg and THg across lower trophic levels was based more on the availability of preferred food resources than on total biological productivity.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Zooplâncton/metabolismo , Animais , Biomassa , China , Clorofila/análogos & derivados , Clorofila/análise , Clorofila A , Copépodes/metabolismo , Daphnia/metabolismo , Eutrofização , Peixes , Cadeia Alimentar , Humanos , Lagos/química
5.
Huan Jing Ke Xue ; 39(3): 1053-1064, 2018 Mar 08.
Artigo em Zh | MEDLINE | ID: mdl-29965449

RESUMO

This study aimed to investigate the occurrence and spatio-temporal distribution of 4-tert-octylphenol (4-t-OP), 4-nonylphenol (4-NP), triclosan (TCS), estrone (E1), 17ß-estradiol (E2), and bisphenol-A (BPA) as endocrine disrupting chemicals (EDCs) in the water of the Liuxi River and to evaluate the risks for estrogenic activity. The results showed that EDCs had been detected at the 14 monitoring sites and the total concentration ranged from 26.07 ng·L-1 to 7109.5 ng·L-1, with the highest contribution rate coming from 4-NP (78.62%), followed by BPA (11.91%), and the other four EDCs (≤ 4.92%). On a spatial and temporal scale, the EDC contents increased longitudinally from upstream to downstream, especially in the heavily-polluted Baiyun section where the water quality was lower than level Ⅴ. The EDC contents in the tributaries were much higher than those in the main channels. Influenced by the monsoon precipitation, the contents of 4-NP, 4-t-OP, and total EDCs in the rainy season were significantly (P<0.05) higher than those in the dry season, while the seasonal changes of E1 and E2 followed the opposite tendency. A Pearson correlation analysis showed that DO was significantly negatively correlated with all the EDCs, suggesting that the EDCs and reductive organic pollutants might coexist. As TN, TP, NH4+-N, permanganate index, and EC were significantly positively correlated with E1, E2, BPA, and TCS but not obviously correlated with 4-NP (P>0.05), we presumed that the pollution source of E1, E2, BPA, and TCS might be the same with nitrogen and phosphorus nutrition, originating from the point source emission of the domestic sewage, industrial, and agricultural wastewater. In contrast, 4-NP and 4-t-OP more likely originated from the non-point source pollution from agriculture. RDA results showed that the variation of the EDCs contents by season was more obvious than that in space (RDA1 56.14%>RDA2 14.20%), which was much more influenced by 4-NP in the rainy season and by BPA in the dry season. As E1, E2, and TCS were positively correlated with the Cu, Zn, cyanide, and fecal coliform, these three target compounds could be used to indicate the multiple pollution components for water quality. Compared with the worldwide reported EDC contents in waters, 4-NP, BPA, and TCS contents in the middle and lower reaches of the Liuxi River were at higher levels, while E1, E2, and 4-t-OP were at the middle and lower levels. The risk assessment for estrogenic activity showed that the RQ values in the middle and lower reaches of the Liuxi River were all greater than 1, indicating that the downstream river sections were under high risk for estrogenic activity. As a result, appropriate precautions are needed to improve environmental management.


Assuntos
Disruptores Endócrinos/análise , Monitoramento Ambiental , Rios/química , Poluentes Químicos da Água/análise , Compostos Benzidrílicos , China , Estradiol , Estrona , Fenóis , Análise Espaço-Temporal , Triclosan , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA