Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 259(Pt 2): 129358, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218267

RESUMO

To expand functions of transparent wood (TW) including fluorescence, ultraviolet blocking, heat preservation and insulation, we adopted carbon quantum dots (CQDs) to prepare luminescent transparent wood. CQDs with yellow/red fluorescence (YCD/RCD) were prepared by chitosan and o-phenylenediamine. Afterwards, Balsa woods were pretreated to obtain wood frameworks (DW/LW), which were further combined with epoxy resin for achieving transparent woods (DW-TW/LW-TW). Results showed LW retained more lignin, the LW-TW blocked more ultraviolet light, displaying the better visible transmission and mechanical strength than DW-TW. After adding YCD and RCD to LW-TW, the yellow and red fluorescence transparent woods with outstanding mechanical and ultraviolet blocking properties were prepared, especially the red fluorescence transparent wood (RTW). Specifically, the tensile strength and elongation at break of RTW reached up to 19.39 MPa and 5.35 %, respectively. Moreover, RTW could block 78.8 % of UV-B light and 78 % of UV-A light, respectively. Besides, RTW possessed excellent visible transmission (70.3 %) and UV blocking (88.87 %). Significantly, both RTW and YTW displayed outstanding water repellency, excellent durability, good thermal stability and insulation. Predictably, luminescent transparent woods certainly will enhance the adaptability of wood, and broaden its applications in green decoration, lighting setup, sensor and other fields.


Assuntos
Quitosana , Madeira , Luminescência , Fluorescência , Carbono
2.
Int J Biol Macromol ; 267(Pt 2): 131416, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582486

RESUMO

Heavy metal ions have extremely high toxicity. As the top of food chain, human beings certainly will accumulate them by ingesting food and participating other activities, which eventually result in the damage to our health. Therefore, it is very meaningful and necessary to design a simple, portable, stable and efficient material for heavy metal ions detection. Based on the spirolactam Rhodamine 6G (SRh6G) fluorescent probe, we prepared two types of nanocomposite materials (membrane and aerogel) by vacuum filtration and freeze-drying methods with lignocellulose nanofiber (CNF) as a carrier, polyvinyl alcohol (PVA) and glutaraldehyde (GA) as the cross-linkers. Then the microstructure, chemical composition, wetting property, fluorescence intensity and selectivity of as-prepared SRh6G/PVA/CNF would be characterized and analyzed. Results showed that SRh6G/PVA/CNF nanocomposites would turn red in color under strong acidic environment and produced orange fluorescence under ultraviolet light. Besides, they were also to detect Al3+, Cu2+, Hg2+, Fe3+ and Ag+ through color and fluorescence variations. We had further tested its sensitivity, selectivity, adsorption, fluorescence limits of detection (LOD) to Fe3+ and Cu2+. The test towards real water samples (hospital wastewater, Songhua River and tap water) proved that SRh6G/PVA/CNF nanocomposites could detect the polluted water with low concentrations of Fe3+ and Cu2+. In addition, SRh6G/PVA/CNF nanocomposites have excellent mechanical property, repeatability, superhydrophilicity and underwater superoleophobicity, which may offer a theoretical reference for the assembly strategy and detection application of cellulose-based fluorescent probe.


Assuntos
Corantes Fluorescentes , Lignina , Nanofibras , Rodaminas , Águas Residuárias , Poluentes Químicos da Água , Rodaminas/química , Lignina/química , Lignina/análise , Águas Residuárias/química , Águas Residuárias/análise , Nanofibras/química , Corantes Fluorescentes/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Colorimetria/métodos , Metais Pesados/análise , Metais Pesados/química , Nanocompostos/química , Íons/análise , Limite de Detecção , Álcool de Polivinil/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA