RESUMO
Congenital diaphragmatic hernia (CDH) is a relatively common and genetically heterogeneous structural birth defect associated with high mortality and morbidity. We describe eight unrelated families with an X-linked condition characterized by diaphragm defects, variable anterior body-wall anomalies, and/or facial dysmorphism. Using linkage analysis and exome or genome sequencing, we found that missense variants in plastin 3 (PLS3), a gene encoding an actin bundling protein, co-segregate with disease in all families. Loss-of-function variants in PLS3 have been previously associated with X-linked osteoporosis (MIM: 300910), so we used in silico protein modeling and a mouse model to address these seemingly disparate clinical phenotypes. The missense variants in individuals with CDH are located within the actin-binding domains of the protein but are not predicted to affect protein structure, whereas the variants in individuals with osteoporosis are predicted to result in loss of function. A mouse knockin model of a variant identified in one of the CDH-affected families, c.1497G>C (p.Trp499Cys), shows partial perinatal lethality and recapitulates the key findings of the human phenotype, including diaphragm and abdominal-wall defects. Both the mouse model and one adult human male with a CDH-associated PLS3 variant were observed to have increased rather than decreased bone mineral density. Together, these clinical and functional data in humans and mice reveal that specific missense variants affecting the actin-binding domains of PLS3 might have a gain-of-function effect and cause a Mendelian congenital disorder.
Assuntos
Hérnias Diafragmáticas Congênitas , Osteoporose , Adulto , Humanos , Masculino , Animais , Camundongos , Hérnias Diafragmáticas Congênitas/genética , Actinas/genética , Mutação de Sentido Incorreto/genética , Osteoporose/genéticaRESUMO
N-alpha-acetylation is a common co-translational protein modification that is essential for normal cell function in humans. We previously identified the genetic basis of an X-linked infantile lethal Mendelian disorder involving a c.109T>C (p.Ser37Pro) missense variant in NAA10, which encodes the catalytic subunit of the N-terminal acetyltransferase A (NatA) complex. The auxiliary subunit of the NatA complex, NAA15, is the dimeric binding partner for NAA10. Through a genotype-first approach with whole-exome or genome sequencing (WES/WGS) and targeted sequencing analysis, we identified and phenotypically characterized 38 individuals from 33 unrelated families with 25 different de novo or inherited, dominantly acting likely gene disrupting (LGD) variants in NAA15. Clinical features of affected individuals with LGD variants in NAA15 include variable levels of intellectual disability, delayed speech and motor milestones, and autism spectrum disorder. Additionally, mild craniofacial dysmorphology, congenital cardiac anomalies, and seizures are present in some subjects. RNA analysis in cell lines from two individuals showed degradation of the transcripts with LGD variants, probably as a result of nonsense-mediated decay. Functional assays in yeast confirmed a deleterious effect for two of the LGD variants in NAA15. Further supporting a mechanism of haploinsufficiency, individuals with copy-number variant (CNV) deletions involving NAA15 and surrounding genes can present with mild intellectual disability, mild dysmorphic features, motor delays, and decreased growth. We propose that defects in NatA-mediated N-terminal acetylation (NTA) lead to variable levels of neurodevelopmental disorders in humans, supporting the importance of the NatA complex in normal human development.
Assuntos
Anormalidades Múltiplas/genética , Transtorno do Espectro Autista/genética , Predisposição Genética para Doença , Variação Genética , Deficiência Intelectual/genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Adolescente , Adulto , Linhagem Celular , Criança , Éxons/genética , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/metabolismo , Linhagem , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMO
Congenital diaphragmatic hernia (CDH), characterized by malformation of the diaphragm and hypoplasia of the lungs, is one of the most common and severe birth defects, and is associated with high morbidity and mortality rates. There is growing evidence demonstrating that genetic factors contribute to CDH, although the pathogenesis remains largely elusive. Single-nucleotide polymorphisms have been studied in recent whole-exome sequencing efforts, but larger copy number variants (CNVs) have not yet been studied on a large scale in a case control study. To capture CNVs within CDH candidate regions, we developed and tested a targeted array comparative genomic hybridization platform to identify CNVs within 140 regions in 196 patients and 987 healthy controls, and identified six significant CNVs that were either unique to patients or enriched in patients compared with controls. These CDH-associated CNVs reveal high-priority candidate genes including HLX, LHX1, and HNF1B We also discuss CNVs that are present in only one patient in the cohort but have additional evidence of pathogenicity, including extremely rare large and/or de novo CNVs. The candidate genes within these predicted disease-causing CNVs form functional networks with other known CDH genes and play putative roles in DNA binding/transcription regulation and embryonic development. These data substantiate the importance of CNVs in the etiology of CDH, identify CDH candidate genes and pathways, and highlight the importance of ongoing analysis of CNVs in the study of CDH and other structural birth defects.
Assuntos
Hibridização Genômica Comparativa/métodos , Variações do Número de Cópias de DNA , Marcadores Genéticos , Hérnias Diafragmáticas Congênitas/genética , Polimorfismo de Nucleotídeo Único , Estudos de Casos e Controles , Humanos , PrognósticoRESUMO
Congenital diaphragmatic hernia (CDH) is a severe birth defect that is often accompanied by other congenital anomalies. Previous exome sequencing studies for CDH have supported a role of de novo damaging variants but did not identify any recurrently mutated genes. To investigate further the genetics of CDH, we analyzed de novo coding variants in 362 proband-parent trios including 271 new trios reported in this study. We identified four unrelated individuals with damaging de novo variants in MYRF (P = 5.3x10(-8)), including one likely gene-disrupting (LGD) and three deleterious missense (D-mis) variants. Eight additional individuals with de novo LGD or missense variants were identified from our other genetic studies or from the literature. Common phenotypes of MYRF de novo variant carriers include CDH, congenital heart disease and genitourinary abnormalities, suggesting that it represents a novel syndrome. MYRF is a membrane associated transcriptional factor highly expressed in developing diaphragm and is depleted of LGD variants in the general population. All de novo missense variants aggregated in two functional protein domains. Analyzing the transcriptome of patient-derived diaphragm fibroblast cells suggest that disease associated variants abolish the transcription factor activity. Furthermore, we showed that the remaining genes with damaging variants in CDH significantly overlap with genes implicated in other developmental disorders. Gene expression patterns and patient phenotypes support pleiotropic effects of damaging variants in these genes on CDH and other developmental disorders. Finally, functional enrichment analysis implicates the disruption of regulation of gene expression, kinase activities, intra-cellular signaling, and cytoskeleton organization as pathogenic mechanisms in CDH.
Assuntos
Variação Genética , Hérnias Diafragmáticas Congênitas/genética , Proteínas de Membrana/genética , Mutação , Fatores de Transcrição/genética , Pré-Escolar , Variações do Número de Cópias de DNA , Deficiências do Desenvolvimento/genética , Feminino , Cardiopatias Congênitas/genética , Hérnias Diafragmáticas Congênitas/metabolismo , Humanos , Recém-Nascido , Estudos Longitudinais , Masculino , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Fenótipo , Análise de Sequência de RNA , Síndrome , Fatores de Transcrição/metabolismo , Sequenciamento do Exoma , Sequenciamento Completo do GenomaRESUMO
Turner syndrome is a sex chromosome abnormality in which a female has a single X chromosome or structurally deficient second sex chromosome. The phenotypic spectrum is broad, and atypical features prompt discussion of whether the known features of Turner syndrome should be further expanded. With the advent of clinical whole exome sequencing, there has been increased realization that some patients with genetic disorders carry a second genetic disorder, leading us to hypothesize that a "dual diagnosis" may be more common than suspected for Turner syndrome. We report five new patients with Turner syndrome and a co-occurring genetic disorder including one patient with Li-Fraumeni syndrome, Li-Fraumeni and Noonan syndrome, mosaic trisomy 8, pathogenic variant in RERE, and blepharophimosis-ptosis-epicanthanus inversus syndrome. We also undertook an extensive literature review of 147 reports of patients with Turner syndrome and a second genetic condition. A total of 47 patients (31%) had trisomy 21, followed by 36 patients (24%) had one of 11 X-linked disorders. Notably, 80% of the 147 reported patients with a dual diagnosis had mosaicism for Turner syndrome, approximately twice the frequency in the general Turner syndrome population. This article demonstrates the potential for co-occurring syndromes in patients with Turner syndrome, prompting us to recommend a search for an additional genetic disorder in Turner patients with unusual features. Knowledge of the second condition may lead to modification of treatment and/or surveillance. We anticipate that increased awareness and improved diagnostic technologies will lead to the identification of more cases of Turner syndrome with a co-occurring genetic syndrome.
Assuntos
Vigilância da População , Síndrome de Turner/diagnóstico , Síndrome de Turner/terapia , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Síndrome de Turner/complicaçõesRESUMO
Congenital Diaphragmatic Hernia (CDH) is a common and often lethal birth defect characterized by diaphragmatic structural defects and pulmonary hypoplasia. CDH is isolated in 60% of newborns, but may also be part of a complex phenotype with additional anomalies. We performed whole exome sequencing (WES) on 87 individuals with isolated or complex CDH and on their unaffected parents, to assess the contribution of de novo mutations in the etiology of diaphragmatic and pulmonary defects and to identify new candidate genes. A combined analysis with 39 additional trios with complex CDH, previously published, revealed a significant genome-wide burden of de novo variants compared to background mutation rate and 900 control trios. We identified an increased burden of likely gene-disrupting (LGD, i.e. nonsense, frameshift, and canonical splice site) and predicted deleterious missense (D-mis) variants in complex and isolated CDH patients. Overall, an excess of predicted damaging de novo LGD and D-mis variants relative to the expected frequency contributed to 21% of complex cases and 12% of isolated CDH cases. The burden of de novo variants was higher in genes expressed in the developing mouse diaphragm and heart. Some overlap with genes responsible for congenital heart defects and neurodevelopmental disorders was observed in CDH patients within our cohorts. We propose that de novo variants contribute significantly to the development of CDH.
Assuntos
Estudo de Associação Genômica Ampla , Hérnias Diafragmáticas Congênitas/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Ligação ProteicaRESUMO
Congenital diaphragmatic hernia (CDH) is one of the most common and lethal congenital anomalies, and significant evidence is available in support of a genetic contribution to its etiology, including single-gene knockout mice associated with diaphragmatic defects, rare monogenetic disorders in humans, familial aggregation, and association of CDH with chromosomal abnormalities. Structural lung defects in the form of lung hypoplasia are almost invariably seen in patients with CDH and frequently in animal models of this condition. Better understanding of the mechanisms of pulmonary defects in CDH has the potential for creating targeted therapies, particularly in postnatal stages, when therapeutics can have maximum clinical impact on the surviving cohorts. Successful treatment of CDH is dependent on the integration of human genomic and genetic data with developmental expression profiling, mouse knockouts, and gene network and pathway modeling, which have generated a large number of candidate genes and pathways for follow-up studies. In particular, defective alveolarization appears to be a common and potentially actionable phenotype in both patients and animal models.
Assuntos
Aberrações Cromossômicas , Hérnias Diafragmáticas Congênitas/genética , Hérnias Diafragmáticas Congênitas/patologia , Animais , Diafragma/embriologia , Diafragma/patologia , Modelos Animais de Doenças , Feminino , Hérnias Diafragmáticas Congênitas/terapia , Humanos , Lactente , Pulmão/embriologia , Pulmão/patologia , Camundongos , Camundongos KnockoutRESUMO
Congenital diaphragmatic hernia (CDH) is a common and severe birth defect. Despite its clinical significance, the genetic and developmental pathways underlying this disorder are incompletely understood. In this study, we report a catalog of variants detected by a whole exome sequencing study on 275 individuals with CDH. Predicted pathogenic variants in genes previously identified in either humans or mice with diaphragm defects are enriched in our CDH cohort compared with 120 size-matched random gene sets. This enrichment was absent in control populations. Variants in these critical genes can be found in up to 30.9% of individuals with CDH. In addition, we filtered variants by using genes derived from regions of recurrent copy number variations in CDH, expression profiles of the developing diaphragm, protein interaction networks expanded from the known CDH-causing genes, and prioritized genes with ultrarare and highly disruptive variants, in 11.3% of CDH patients. These strategies have identified several high priority genes and developmental pathways that likely contribute to the CDH phenotype. These data are valuable for comparison of candidate genes generated from whole exome sequencing of other CDH cohorts or multiplex kindreds and provide ideal candidates for further functional studies. Furthermore, we propose that these genes and pathways will enhance our understanding of the heterogeneous molecular etiology of CDH.
Assuntos
Hérnias Diafragmáticas Congênitas/etiologia , Hérnias Diafragmáticas Congênitas/genética , Animais , Estudos de Coortes , Biologia Computacional , Variações do Número de Cópias de DNA , Diafragma/embriologia , Exoma , Variação Genética , Hérnias Diafragmáticas Congênitas/embriologia , Humanos , Camundongos , Mapas de Interação de ProteínasRESUMO
BACKGROUND: Type IV collagen is the main component of the basement membrane that gives strength to the blood-gas barrier (BGB). In mammals, the formation of a mature BGB occurs primarily after birth during alveologenesis and requires the formation of septa from the walls of the saccule. In contrast, in avians, the formation of the BGB occurs rapidly and prior to hatching. Mutation in basement membrane components results in an abnormal alveolar phenotype; however, the specific role of type IV collagen in regulating alveologenesis remains unknown. RESULTS: We have performed a microarray expression analysis in late chick lung development and found that COL4A1 and COL4A2 were among the most significantly upregulated genes during the formation of the avian BGB. Using mouse models, we discovered that mutations in murine Col4a1 and Col4a2 genes affected the balance between lung epithelial progenitors and differentiated cells. Mutations in Col4a1 derived from the vascular component were sufficient to cause defects in vascular development and the BGB. We also show that Col4a1 and Col4a2 mutants displayed disrupted myofibroblast proliferation, differentiation and migration. Lastly, we revealed that addition of type IV collagen protein induced myofibroblast proliferation and migration in monolayer culture and increased the formation of mesenchymal-epithelial septal-like structures in co-culture. CONCLUSIONS: Our study showed that type IV collagen and, therefore the basement membrane, play fundamental roles in coordinating alveolar morphogenesis. In addition to its role in the formation of epithelium and vasculature, type IV collagen appears to be key for alveolar myofibroblast development by inducing their proliferation, differentiation and migration throughout the developing septum.
Assuntos
Colágeno Tipo IV/metabolismo , Células Endoteliais/citologia , Células Epiteliais/citologia , Morfogênese , Fragmentos de Peptídeos/metabolismo , Células A549 , Animais , Membrana Basal/metabolismo , Diferenciação Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Embrião de Galinha , Técnicas de Cocultura , Colágeno Tipo IV/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Pulmão/citologia , Camundongos , Camundongos Knockout , Análise em Microsséries , Mutação , Miofibroblastos/citologia , Fragmentos de Peptídeos/genética , Regulação para CimaRESUMO
COUP-TFII (NR2F2) is mapped to the 15q26 deletion hotspot associated with the common and highly morbid congenital diaphragmatic hernia (CDH). Conditional homozygous deletions of COUP-TFII in mice result in diaphragmatic defects analogous to the human Bochdalek-type hernia phenotype. Despite evidence from animal models however, mutations in the coding sequence of COUP-TFII have not been reported in patients, prompting the speculation that additional coding or non-coding sequences in the 15q26 locus are necessary for diaphragmatic hernias to develop. In this report, we describe a case of a patient with a heterozygous de novo COUP-TFII frameshift mutation, presenting with CDH and an atrial septal defect. The p.Pro33AlafsTer77 mutation specifically disrupts protein isoform 1 which contains the DNA binding domain. In addition, we review other COUP-TFII sequence variations and deletions that have been described in cases of CDH. We conclude that COUP-TFII mutations can cause diaphragmatic hernias, and should be included in the differential diagnosis of CDH patients, particularly those with comorbid congenital heart defects. © 2016 Wiley Periodicals, Inc.
Assuntos
Fator II de Transcrição COUP/genética , Mutação da Fase de Leitura , Estudos de Associação Genética , Hérnias Diafragmáticas Congênitas/diagnóstico , Hérnias Diafragmáticas Congênitas/genética , Fenótipo , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Alelos , Análise Mutacional de DNA , Feminino , Genótipo , Humanos , Recém-Nascido , Masculino , Linhagem , Polimorfismo de Nucleotídeo ÚnicoRESUMO
Congenital diaphragmatic hernia (CDH) is a common (1 in 3,000 live births) major congenital malformation that results in significant morbidity and mortality. The discovery of CDH loci using standard genetic approaches has been hindered by its genetic heterogeneity. We hypothesized that gene expression profiling of developing embryonic diaphragms would help identify genes likely to be associated with diaphragm defects. We generated a time series of whole-transcriptome expression profiles from laser captured embryonic mouse diaphragms at embryonic day (E)11.5 and E12.5 when experimental perturbations lead to CDH phenotypes, and E16.5 when the diaphragm is fully formed. Gene sets defining biologically relevant pathways and temporal expression trends were identified by using a series of bioinformatic algorithms. These developmental sets were then compared with a manually curated list of genes previously shown to cause diaphragm defects in humans and in mouse models. Our integrative filtering strategy identified 27 candidates for CDH. We examined the diaphragms of knockout mice for one of the candidate genes, pre-B-cell leukemia transcription factor 1 (Pbx1), and identified a range of previously undetected diaphragmatic defects. Our study demonstrates the utility of genetic characterization of normal development as an integral part of a disease gene identification and prioritization strategy for CDH, an approach that can be extended to other diseases and developmental anomalies.
Assuntos
Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Estudos de Associação Genética , Hérnias Diafragmáticas Congênitas , Transcriptoma/genética , Animais , Diafragma/embriologia , Diafragma/metabolismo , Diafragma/patologia , Regulação da Expressão Gênica no Desenvolvimento , Hérnia Diafragmática/genética , Hérnia Diafragmática/patologia , Proteínas de Homeodomínio/metabolismo , Lasers , Mesoderma/embriologia , Mesoderma/metabolismo , Mesoderma/patologia , Camundongos , Camundongos Knockout , Modelos Biológicos , Fator de Transcrição 1 de Leucemia de Células Pré-B , Transdução de Sinais/genética , Fatores de Tempo , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo , Transcrição GênicaRESUMO
Background: Despite monogenic and polygenic contributions to cardiovascular disease (CVD), genetic testing is not widely adopted, and current tests are limited by the breadth of surveyed conditions and interpretation burden. Methods: We developed a comprehensive clinical genome CVD test with semi-automated interpretation. Monogenic conditions and risk alleles were selected based on the strength of disease association and evidence for increased disease risk, respectively. Non-CVD secondary findings genes, pharmacogenomic (PGx) variants and CVD polygenic risk scores (PRS) were assessed for inclusion. Test performance was modeled using 2,594 genomes from the 1000 Genomes Project, and further investigated in 20 previously tested individuals. Results: The CVD genome test is composed of a panel of 215 CVD gene-disease pairs, 35 non-CVD secondary findings genes, 4 risk alleles or genotypes, 10 PGx genes and a PRS for coronary artery disease. Modeling of test performance using samples from the 1000 Genomes Project revealed ~6% of individuals with a monogenic finding in a CVD-associated gene, 6% with a risk allele finding, ~1% with a non-CVD secondary finding, and 93% with CVD-associated PGx variants. Assessment of blinded clinical samples showed complete concordance with prior testing. An average of 4 variants were reviewed per case, with interpretation and reporting time ranging from 9-96 min. Conclusions: A genome sequencing based CVD genetic risk assessment can provide comprehensive genetic disease and genetic risk information to patients with CVD. The semi-automated and limited interpretation burden suggest that this testing approach could be scaled to support population-level initiatives.
RESUMO
Background: Cardiovascular disease continues to be the leading cause of death globally. Clinical practice guidelines aimed at improving disease management and positively impacting major cardiac adverse events recommend genetic testing for inherited cardiovascular conditions such as dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), long QT syndrome (LQTS), hereditary amyloidosis, and familial hypercholesterolemia (FH); however, little is known about how consistently practitioners order genetic testing for these conditions in routine clinical practice. This study aimed to assess the adoption of guideline-directed genetic testing for patients diagnosed with DCM, HCM, LQTS, hereditary amyloidosis, or FH. Methods: This retrospective cohort study captured real-world evidence of genetic testing from ICD-9-CM and ICD-10-CM codes, procedure codes, and structured text fields of de-identified patient records in the Veradigm Health Insights Ambulatory EHR Research Database linked with insurance claims data. Data analysis was conducted using an automated electronic health record analysis engine. Patient records in the Veradigm database were sourced from more than 250,000 clinicians serving over 170 million patients in outpatient primary care and specialty practice settings in the United States and linked insurance claims data from public and private insurance providers. The primary outcome measure was evidence of genetic testing within six months of condition diagnosis. Results: Between January 1, 2017, and December 31, 2021, 224,641 patients were newly diagnosed with DCM, HCM, LQTS, hereditary amyloidosis, or FH and included in this study. Substantial genetic testing care gaps were identified. Only a small percentage of patients newly diagnosed with DCM (827/101,919; 0.8%), HCM (253/15,507; 1.6%), LQTS (650/56,539; 1.2%), hereditary amyloidosis (62/1,026; 6.0%), or FH (718/49,650; 1.5%) received genetic testing. Conclusions: Genetic testing is underutilized across multiple inherited cardiovascular conditions. This real-world data analysis provides insights into the delivery of genomic healthcare in the United States and suggests genetic testing guidelines are rarely followed in practice.
RESUMO
Chromosome 8p23.1 is a common hotspot associated with major congenital malformations, including congenital diaphragmatic hernia (CDH) and cardiac defects. We present findings from high-resolution arrays in patients who carry a loss (n = 18) or a gain (n = 1) of sub-band 8p23.1. We confirm a region involved in both diaphragmatic and heart malformations. Results from a novel CNVConnect algorithm, prioritizing protein-protein interactions between products of genes in the 8p23.1 hotspot and products of previously known CDH causing genes, implicated GATA4, NEIL2, and SOX7 in diaphragmatic defects. Sequence analysis of these genes in 226 chromosomally normal CDH patients, as well as in a small number of deletion 8p23.1 patients, showed rare unreported variants in the coding region; these may be contributing to the diaphragmatic phenotype. We also demonstrated that two of these three genes were expressed in the E11.5-12.5 primordial mouse diaphragm, the developmental stage at which CDH is thought to occur. This combination of bioinformatics and expression studies can be applied to other chromosomal hotspots, as well as private microdeletions or microduplications, to identify causative genes and their interaction networks.
Assuntos
Hérnias Diafragmáticas Congênitas , Animais , Deleção Cromossômica , Cromossomos Humanos Par 8/genética , Cromossomos Humanos Par 8/metabolismo , DNA/sangue , DNA/genética , DNA Glicosilases/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Feminino , Fator de Transcrição GATA4/genética , Cardiopatias Congênitas/sangue , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Hérnia Diafragmática/sangue , Hérnia Diafragmática/genética , Hérnia Diafragmática/metabolismo , Humanos , Cariotipagem , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Gravidez , Mapas de Interação de Proteínas , Fatores de Transcrição SOXF/genéticaRESUMO
Noonan syndrome is a genetic condition characterized by congenital heart defects, short stature, and characteristic facial features. Familial or de novo mutations in PTPN11, RAF1, SOS1, KRAS, and NRAS are responsible for 60-75% of the cases, thus, additional genes are expected to be involved in the pathogenesis. In addition, the genotype-phenotype correlation has been hindered by the highly variable expressivity of the disease. For all these reasons, expanding the genotyped and clinically evaluated case numbers will benefit the clinical community. A mutation analysis has been performed on RAF1, SOS1, and GRB2, in 24 patients previously found to be negative for PTPN11 and KRAS mutations. We identified four mutations in SOS1 and one in RAF1, while no GRB2 variants have been found. Interestingly, the RAF1 mutation was present in a patient also carrying a newly identified p.R497Q familial SOS1 mutation, segregating with a typical Noonan Syndrome SOS1 cutaneous phenotype. Functional analysis demonstrated that the R497Q SOS1 mutation leads to Jnk activation, but has no effect on the Ras effector Erk1. We propose that this variant might contribute to the onset of the peculiar ectodermal traits displayed by the propositus amidst the more classical Noonan syndrome presentation. To our knowledge, this is the first reported case of a patient harboring mutations in two genes, with an involvement of both Ras and Rac1 pathways, indicating that SOS1 may have a role of modifier gene that might contribute the variable expressivity of the disease, evidencing a genotype-phenotype correlation in the family.
Assuntos
Proteína Adaptadora GRB2/genética , Mutação de Sentido Incorreto , Síndrome de Noonan/genética , Proteínas Proto-Oncogênicas c-raf/genética , Proteína SOS1/genética , Análise Mutacional de DNA , Família , Genótipo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas rac1 de Ligação ao GTP , Proteínas rasRESUMO
Cytogenetic and molecular cytogenetic studies demonstrate association between congenital diaphragmatic hernia (CDH) and chromosome 1q41q42 deletions. In this study, we screened a large CDH cohort (N=179) for microdeletions in this interval by the multiplex ligation-dependent probe amplification (MLPA) technique, and also sequenced two candidate genes located therein, dispatched 1 (DISP1) and homo sapiens H2.0-like homeobox (HLX). MLPA analysis verified deletions of this region in two cases, an unreported patient with a 46,XY,del(1)(q41q42.13) karyotype and a previously reported patient with a Fryns syndrome phenotype [Kantarci et al., 2006]. HLX sequencing showed a novel but maternally inherited single nucleotide variant (c.27C>G) in a patient with isolated CDH, while DISP1 sequencing revealed a mosaic de novo heterozygous substitution (c.4412C>G; p.Ala1471Gly) in a male with a left-sided Bochdalek hernia plus multiple other anomalies. Pyrosequencing demonstrated the mutant allele was present in 43%, 12%, and 4.5% of the patient's lymphoblastoid, peripheral blood lymphocytes, and saliva cells, respectively. We examined Disp1 expression at day E11.5 of mouse diaphragm formation and confirmed its presence in the pleuroperitoneal fold, as well as the nearby lung which also expresses Sonic hedgehog (Shh). Our report describes the first de novo DISP1 point mutation in a patient with complex CDH. Combining this finding with Disp1 embryonic mouse diaphragm and lung tissue expression, as well as previously reported human chromosome 1q41q42 aberrations in patients with CDH, suggests that DISP1 may warrant further consideration as a CDH candidate gene.
Assuntos
Cromossomos Humanos Par 1 , Anormalidades Congênitas/genética , Hérnia Diafragmática/genética , Criança , Mapeamento Cromossômico , DNA/sangue , DNA/genética , DNA/isolamento & purificação , Primers do DNA , Feminino , Proteínas Hedgehog/genética , Humanos , Hibridização in Situ Fluorescente , Recém-Nascido , Consentimento Livre e Esclarecido , Pulmão/fisiologia , Masculino , Mosaicismo , Deleção de SequênciaRESUMO
Mutations in the gene LRP2 have recently been identified as the cause of Donnai-Barrow and Facio-oculo-acoustico-renal (DB/FOAR) syndrome. More than two dozen cases, the first reported more than 30 years ago by Holmes, have been published. Summarizing available information, we highlight the cardinal features of the disorder found in >or=90% of published cases. These features include: agenesis of the corpus callosum, developmental delay, enlarged anterior fontanelle, high myopia, hypertelorism, proteinuria, and sensorineural hearing loss. Congenital diaphragmatic hernia and omphalocele are reported in only half of the patients. There is no evidence for genotype-phenotype correlation, though the sample size is too small to preclude this with certainty. Although several conditions to consider in the differential diagnosis are highlighted, the diagnosis of DB/FOAR syndrome should not be difficult to establish as its constellation of findings is strikingly characteristic.
Assuntos
Anormalidades Múltiplas , Anormalidades Craniofaciais , Perda Auditiva Neurossensorial , Miopia , Proteinúria , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/fisiopatologia , Adolescente , Criança , Pré-Escolar , Anormalidades Craniofaciais/diagnóstico , Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Diagnóstico Diferencial , Feminino , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Humanos , Lactente , Recém-Nascido , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Miopia/diagnóstico , Miopia/genética , Proteinúria/diagnóstico , Proteinúria/genética , Síndrome , Adulto JovemRESUMO
Appendicitis is one of the most common causes of acute abdomen in adults and appendectomy is the most common emergency abdominal procedure. Laparoscopic appendectomy has gained popularity only in recent years and the optimal approach for the treatment of acute appendicitis is still under debate. This retrospective study aimed at examining the current indications for laparoscopic appendectomy. 1024 patients undergoing laparoscopic appendectomy between February 1992 and December 2007 were retrospectively reviewed. 39.9% of patients (n=408) underwent emergency surgery. In 616 cases (60.1%) conservative management was performed in vain and these patients underwent an elective operation. In the 36 patients with an intraoperative normal appendix, other pathological findings were laparoscopically detected and treated. Conversion to an open procedure was required for 13 (1.3%) cases. The mean operative time was 38 min and the average length of postoperative hospitalization was 2.5 days. The overall morbidity rate was 2.6%. Laparoscopic appendectomy should be considered a procedure of choice for the treatment of non-complicated appendicitis. We stress the possibility to laparoscopically treat even complicated appendicitis in the surgical setting with substantial experience in minimally invasive surgery.
Assuntos
Apendicectomia/métodos , Apendicite/cirurgia , Laparoscopia/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Bases de Dados Factuais , Procedimentos Cirúrgicos Eletivos/métodos , Emergências , Feminino , Humanos , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento , Adulto JovemRESUMO
Chordomas are rare embryogenetic tumors, arising from remnants of the notochord, characterized by local invasiveness and variable tendency for recurrence. No molecular markers are currently used in a clinical setting to distinguish chordomas with an indolent or an aggressive pattern. Among the genetic lesions observed in this tumor, one of the most commonly detected is 1p loss. In a previous study we observed 1p36 loss of heterozygosity (LOH) in 85% of the analyzed chordomas. We studied a group of 16 homogeneously treated skull base chordomas (SBCs), reporting 1p36 LOH in 75% of them and determining the expression pattern of eight apoptotic genes mapped at 1p36. No tumors shared a common expression profile with nucleus pulposus, which is considered the only adult normal tissue deriving from notochord. In particular, tumor necrosis factor receptor superfamily genes TNFRSF8, TNFRSF9, and TNFRSF14 were differently expressed compared with control in a higher percentage of tumors (40%-53%) than were the remaining analyzed genes, suggesting that the deregulation of these three genes might have a role in chordoma tumorigenesis. The presence/absence of LOH and the expression/nonexpression of each apoptotic gene were studied in a survival analysis. Our results suggest that the lack of 1p36 LOH or the presence of TNFRSF8 expression might be associated with a better prognosis in patients with SBCs.