Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Biomacromolecules ; 25(5): 2792-2802, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38602263

RESUMO

Polyesters from furandicarboxylic acid derivatives, i.e., dimethyl 2,5-furandicarboxylate (2,5-DMFDCA) and 2,4-DMFDCA, show interesting properties among bio-based polymers. Another potential heteroaromatic monomer, 3,4-bis(hydroxymethyl)furan (3,4-BHMF), is often overlooked but holds promise for biopolymer synthesis. Cleaning and greening synthetic procedures, i.e., enzymatic polymerization, offer sustainable pathways. This study explores the Candida antarctica lipase B (CALB)-catalyzed copolymerization of 3,4-BHMF with furan dicarboxylate isomers and aliphatic diols. The furanic copolyesters (co-FPEs) with higher polymerization degrees are obtained using 2,4-isomer, indicating CALB's preference. Material analysis revealed semicrystalline properties in all synthesized 2,5-FDCA-based co-FPEs, with multiple melting temperatures (Tm) from 53 to 124 °C and a glass-transition temperature (Tg) of 9-10 °C. 2,4-FDCA-based co-FPEs showed multiple Tm from 43 to 61 °C and Tg of -14 to 12 °C; one of them was amorphous. In addition, all co-FPEs showed a two-step decomposition profile, indicating aliphatic and semiaromatic segments in the polymer chains.


Assuntos
Ácidos Dicarboxílicos , Proteínas Fúngicas , Furanos , Lipase , Poliésteres , Polimerização , Lipase/química , Lipase/metabolismo , Furanos/química , Proteínas Fúngicas/química , Ácidos Dicarboxílicos/química , Poliésteres/química , Poliésteres/síntese química , Isomerismo , Basidiomycota
2.
Biomacromolecules ; 24(12): 5578-5588, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37934174

RESUMO

Biobased films were synthesized from starch oleate (DS = 2.2) cross-linked with polyethylene glycol with Mn = 2000 and 1000 g · mol-1, and ethylene glycol, all of which were esterified with either lipoic acid (LA) or 3-mercaptopropionic acid (MPA). Cross-linking was achieved through a UV-initiated thiol-ene click, and confirmed by Fourier transform infrared spectroscopy and rheometry. The films exhibit higher degradation temperatures, and an increased degree of crystallinity as cross-linker length increased. The introduction of MPA-based cross-linkers resulted in hydrophilic films, while the contact angle was barely affected by the addition of LA-based cross-linkers. A reduction in maximum strength upon introducing the cross-linkers was observed, while an increase in elongation was observed for most of the LA-based cross-linkers. Our results demonstrate the potential for tuning the mechanical and thermal properties of starch-based films through the cross-linker choice, with some formulations exhibiting increased flexibility that may be well suited for packaging applications.


Assuntos
Amido , Compostos de Sulfidrila , Compostos de Sulfidrila/química , Amido/química , Ácido Oleico , Polietilenoglicóis/química , Ácido 3-Mercaptopropiônico/química
3.
Macromol Rapid Commun ; 42(3): e2000475, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33205556

RESUMO

The global market for 3D printing materials has grown exponentially in the last decade. Today, photopolymers claim almost half of the material sales worldwide. The lack of sustainable resins, applicable in vat photopolymerization that can compete with commercial materials, however, limits the widespread adoption of this technology. The development of "green" alternatives is of great importance in order to reduce the environmental impact of additive manufacturing. This paper reviews the recent evolutions in the field of sustainable photopolymers for 3D printing. It highlights the synthesis and application of biobased resin components, such as photocurable monomers and oligomers, as well as reinforcing agents derived from natural resources. In addition, the design of biologically degradable and recyclable thermoset products in vat photopolymerization is discussed. Together, those strategies will promote the accurate and waste-free production of a new generation of 3D materials for a sustainable plastics economy in the near future.


Assuntos
Plásticos , Impressão Tridimensional
4.
Macromol Rapid Commun ; 41(11): e2000124, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32372547

RESUMO

Blends of semiconducting (SC) and ferroelectric (FE) polymers have been proposed for applications in resistive memories and organic photovoltaics (OPV). For OPV, the rationale is that the local electric field associated with the dipoles in a blend could aid exciton dissociation, thus improving power conversion efficiency. However, FE polymers either require solvents or processing steps that are incompatible with those required for SC polymers. To overcome this limitation, SC (poly(3-hexylthiophene)) and FE (poly(vinylidene fluoride-trifluoroethylene)) components are incorporated into a block copolymer and thus a path to a facile fabrication of smooth thin films from suitably chosen solvents is achieved. In this work, the photophysical properties and device performance of organic solar cells containing the aforementioned block copolymer consisting of poly(vinylidene fluoride-trifluoroethylene): P(VDF-TrFE), poly(3-hexylthiophene): P3HT and the electron acceptor phenyl-C61 -butyric acid methyl ester: [60]PCBM are explored. A decrease in photovoltaic performance is observed in blends of the copolymer with P3HT:[60]PCBM, which is attributed to a less favorable nanomorphology upon addition of the copolymer. The role of lithium fluoride (the cathode modification layer) is also clarified in devices containing the copolymer, and it is demonstrated that ferroelectric compensation prevents the ferroelectricity of the copolymer from improving photovoltaic performance in SC-FE blends.


Assuntos
Fontes de Energia Elétrica , Fulerenos/química , Energia Solar , Processos Fotoquímicos
5.
Biomacromolecules ; 20(3): 1325-1333, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30653917

RESUMO

In this report, we present double-hydrophilic block glycopolymers of poly(2-hydroxyethyl methacrylate)- b-poly(2-(ß-glucosyloxy)ethyl methacrylate) (PHEMA- b-PGEMA) and amphiphilic block glycopolymers of poly(ethyl methacrylate)- b-PGEMA (PEMA- b-PGEMA) synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The block glycopolymers were prepared in two compositions of P(H)EMA macro-chain transfer agents (CTAs) and similar molecular weights of PGEMA. Structural analysis of the resulting polymers as well as the conversion of (H)EMA and GEMA monomers were determined by 1H NMR spectroscopy. Size exclusion chromatography measurements confirmed both P(H)EMA macro-CTAs and block glycopolymers had a low dispersity ( D ≤ 1.5). The synthesized block glycopolymers had a degree of polymerization and a molecular weight up to 222 and 45.3 kg mol-1, respectively. Both block glycopolymers self-assembled into micellar structures in aqueous solutions as characterized by fluorescence spectroscopy, ultraviolet-visible spectroscopy, and dynamic light scattering experiments.


Assuntos
Glucose/química , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química , Cromatografia em Gel , Peso Molecular , Polimerização , Análise Espectral/métodos
6.
Macromol Rapid Commun ; 40(10): e1800874, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30730069

RESUMO

The polyurethane industry is strongly dependent on fossil-based polyols and polyisocyanates. Developing novel sustainable polyols from valuable biobased building blocks is a first step toward strong and durable development. The synthesis and properties of PU films based on pristine and acylated white dextrins (AVEDEX W80) as polyol and an aliphatic, low-viscosity, solvent-free triisocyanate based on hexamethylene diisocyanate (trimer-Desmodur N3300) as crosslinker is reported. After optimizing several conditions, such as the reaction time, reaction temperature, amount of solvent, isocyanate index, and amount per surface area, it is possible to obtain smooth PU films with good thermal properties.


Assuntos
Isocianatos/síntese química , Poliuretanos/química , Dextrinas/química , Isocianatos/química , Polímeros/química , Poliuretanos/síntese química , Solventes/química
7.
Macromol Rapid Commun ; 40(16): e1900144, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31162765

RESUMO

Herein, the synthesis of amylose-coated, temperature-responsive poly(N-vinylcaprolactam) (VCL)-based copolymer microgels by enzyme-catalyzed grafting-from polymerization with phosphorylase b from rabbit muscle is reported. The phosphorylase is able to recognize the oligosaccharide maltoheptaose as primer and attach glucose units from the monomer glucose-1-phosphate to it, thereby forming amylose chains while releasing inorganic phosphate. Therefore, to enable the phosphorylase-catalyzed grafting-from polymerization of glucose-1-phosphate from the PVCL-based microgels, the maltoheptaose primer is covalently attached to the microgel in the first synthesis step. This is realized by adding N-(2-aminoethyl)methacrylamide (AEMAA) as a comonomer to the PVCL microgel to integrate primary amino groups and subsequent coupling of maltoheptaonolactone. Both the PVCL/AEMAA microgel as well as the obtained microgel-maltoheptaose construct are characterized in detail by dynamic light scattering, electrophoretic mobility measurements, IR spectroscopy, and atomic force microscopy. From the microgel-maltoheptaose construct, the grafting-from polymerization of glucose-1-phosphate is performed by the addition of phosphorylase b. Atomic force microscopy images clearly demonstrate the formation of an amylose shell around the microgels. The developed amylose-coated microgels open up promising application possibilities, for example, as colloidal scavengers, since amylose helices can serve as host molecules for inclusion of hydrophobic guest molecules.


Assuntos
Amilose/metabolismo , Caprolactama/análogos & derivados , Microgéis/química , Fosforilases/metabolismo , Polímeros/síntese química , Amilose/química , Biocatálise , Caprolactama/síntese química , Caprolactama/química , Estrutura Molecular , Polimerização , Polímeros/química
8.
Macromol Rapid Commun ; 39(12): e1700865, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29749088

RESUMO

In this study, poly(mandelate-co-glycolate) (PMG), a modified polyglycolide (PGL), is prepared by ring-opening polymerization (ROP) of L-3-phenyl-1,4-dioxane-2,5-dione (PDD); the cyclic dimer of biobased mandelic acid and glycolic acid. The resulting polymer shows an increased glass transition temperature (Tg ) due to the incorporation of phenyl groups in the chain. High molecular weight PMG is obtained by bulk ROP at 150 °C, and it exhibits a glassy amorphous state with enhanced thermal properties such as a Tg being 35 °C higher than conventional PGL. PDD is also copolymerized with glycolide (GL) and lactide (LA), resulting in poly(mandelate-co-glycolate/glycolate) ((P(MG/GL)) with GL and poly(mandelate-co-glycolate/lactide) ((P(MG/LA)) with LA. The thermal properties of P(MG/GL) and P(MG/LA) are found to be distinctly different from PMG and conventional PGL and polylactide, and they are tunable with a changing molar ratio of PDD, GL, and LA. Therefore, PDD opens an elegant way to control and tailor the properties of biobased polyesters.


Assuntos
Glicolatos/química , Ácidos Mandélicos/química , Ácido Poliglicólico/química , Polimerização , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Dioxanos/química , Espectroscopia de Ressonância Magnética , Ácido Poliglicólico/síntese química , Polímeros/síntese química , Polímeros/química , Temperatura de Transição
9.
Macromol Rapid Commun ; 38(17)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28749009

RESUMO

Involving supramolecular chemistry in self-assembling block copolymer systems enables design of complex macromolecular architectures that, in turn, could lead to complex phase behavior. It is an elegant route, as complicated and sensitive synthesis techniques can be avoided. Highly grafted double-comb diblock copolymers based on symmetric double hydrogen bond accepting poly(4-vinylpyridine)-block-poly(N-acryloylpiperidine) diblock copolymers and donating 3-nonadecylphenol amphiphiles are realized and studied systematically by changing the molecular weight of the copolymer. Double perpendicular lamellae-in-lamellae are formed in all complexes, independent of the copolymer molecular weight. Temperature-resolved measurements demonstrate that the supramolecular nature and ability to crystallize are responsible for the formation of such multiblock-like structures. Because of these driving forces and severe plasticization of the complexes in the liquid crystalline state, this supramolecular approach can be useful for steering self-assembly of both low- and high-molecular-weight block copolymer systems.


Assuntos
Polímeros/síntese química , Cristalização , Ligação de Hidrogênio , Polímeros/química , Polivinil/química
10.
Soft Matter ; 12(5): 1496-505, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26658499

RESUMO

Poly(allylamine hydrochloride) (PAH) is chemically functionalized with guanidinium (Gu) moieties in water at room temperature. The resulting PAH-Gu is used to prepare polyelectrolyte multilayers (PEMs) with poly(sodium 4-styrene sulfonate) (PSS) via layer-by-layer deposition. The polyelectrolyte (PE) adsorption processes are monitored real-time by optical reflectometry and a quartz crystal microbalance with dissipation monitoring (QCM-D). Compared to the reference PSS/PAH PEMs, the PSS/PAH-Gu PEMs show a lower amount of deposited PE materials, lower wet thickness, higher stability under alkaline conditions and higher rigidity. These differences are rationalized by the additional Gu-SO3(-) interactions, also affecting the conformation of the PE chains in the PEM. The interactions between the PEMs and various sodium salts (NaCl, NaNO3, Na2SO4 and NaH2PO4) are also monitored using QCM-D. From the changes in the frequency, dissipation responses and supportive Reflection Absorption Infrared Spectroscopy it is concluded that Gu-functionalized PEMs absorb more H2PO4(-) compared to the Gu-free reference PEMs. This can be understood by strong interactions between Gu and H2PO4(-), the differences in the anion hydration energy and the anion valency. It is anticipated that compounds like the presented Gu-functionalized PE may facilitate the further development of H2PO4(-) sensors and ion separation/recovery systems.

11.
Macromol Rapid Commun ; 37(10): 858-64, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27062504

RESUMO

The recovery of ammonium from urine requires distinguishing and excluding sodium and potassium. A polymer inclusion membrane selective for ammonium is developed using an ionophore based on pyrazole substituted benzene. The interactions of the components are studied, as well as their effect on transport and selectivity. Spectroscopic and thermogravimetric measurements show no extensive physical interactions of the components, and that the plasticizer reduces the intermolecular forces (rigidity) of the membrane. The ionophore turns the membrane more rigid, although it increases its swelling degree and therefore the affinity of cations. A ratio of plasticizer (DEHP) and polymer (PVC) of 1:3 in mass gives the highest ammonium flux. Tested contents of ionophore (2 and 5 wt%) show that the higher the content of the ionophore, the fastest the flux is (7.5 × 10(-3) mmol cm(-2) h(-1) ). Selectivity of NH4 (+) over Na(+) and over K(+) is reduced from 13.07 to 9.33 and from 14.15 to 9.57 correspondingly.


Assuntos
Compostos de Amônio/metabolismo , Membranas Artificiais , Polímeros/metabolismo , Compostos de Amônio/química , Benzeno/química , Cátions , Transporte de Íons , Polímeros/síntese química , Polímeros/química , Pirazóis/química
12.
Macromol Rapid Commun ; 37(11): 911-9, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27079547

RESUMO

Linear poly(4-tert-butoxystyrene)-b-poly(4-vinylpyridine) (PtBOS-b-P4VP) diblock copolymers are synthesized using reversible addition-fragmentation chain transfer polymerization. The self-assembly of four different PtBOS-b-P4VP diblock copolymers is studied using small-angle X-ray scattering and transmission electron microscopy and a number of interesting observations are made. A tBOS62 -b-4VP28 diblock copolymer with a weight fraction P4VP of 0.21 shows a disordered morphology of P4VP spheres with liquid-like short-range order despite an estimated value of χN of the order of 50. Increasing the length of the 4VP block to tBOS62 -b-4VP199 results in a diblock copolymer with a weight fraction P4VP of 0.66. It forms a remarkably well-ordered lamellar structure. Likewise, a tBOS146 -b-4VP120 diblock copolymer with a weight fraction P4VP of 0.33 forms an extremely well-ordered hexagonal structure of P4VP cylinders. Increasing the P4VP block of this block copolymer to tBOS146 -b-4VP190 with a weight fraction P4VP of 0.44 results in a bicontinuous gyroid morphology despite the estimated strong segregation of χN≅150. These results are discussed in terms of the architectural dissimilarity of the two monomers, characterized by the presence of the large side group of PtBOS, and the previously reported value of the interaction parameter, χ≅0.39, for this polymer pair.


Assuntos
Poliestirenos/química , Poliestirenos/síntese química , Polivinil/química , Polivinil/síntese química , Estrutura Molecular
13.
Angew Chem Int Ed Engl ; 55(42): 13081-13085, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27633842

RESUMO

The formation of unusual multilayered parallel lamellae-in-lamellae in symmetric supramolecular double-comb diblock copolymers is presented. While keeping the concentration of surfactant fixed, the number of internal layers was found to increase with molecular weight M up to 34 for the largest block copolymer. The number of internal structures n was established to scale as M0.67 and therefore enables easy design of such structures with great precision.

14.
Anal Chem ; 87(19): 9639-46, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26291473

RESUMO

Much progress was made in the straightforward and eco-friendly enzymatic synthesis of shorter cellulose chains (oligocellulose). Here, we report the determination of a molar mass distribution of the oligocellulose synthesized from cellobiose (CB) and α-glucose 1-phosphate by reverse phosphorolysis, using enzymes cellodextrin phosphorylase from Clostridium stercorarium or Clostridium thermocellum as catalyst. The oligocellulose molar mass distribution was analyzed using three different methods: (1)H NMR spectroscopy, matrix assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-ToF MS) and size exclusion chromatography (SEC). The molar mass distribution of the synthesized oligocellulose was only dependent on the concentration of cellobiose used in the reaction. Data obtained from MALDI-ToF MS and SEC were almost identical and showed that oligocellulose synthesized using 10 mM CB has an average degree of polymerization (DPn) of ∼7, while a DPn of ∼14 was achieved when 0.2 mM CB was used in the reaction. Because of solvent limitation in SEC analysis, MALDI-ToF MS was shown to be the technique of choice for accurate, easy and fast oligocellulose molar mass distribution determination.

15.
Biomacromolecules ; 16(11): 3674-85, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26418272

RESUMO

Furan-2,5-dicarboxylic acid (FDCA)-based furanic-aliphatic polyamides can be used as promising sustainable alternatives to polyphthalamides (semiaromatic polyamides) and be applied as high performance materials with great commercial interest. In this study, poly(octamethylene furanamide) (PA8F), an analog to poly(octamethylene terephthalamide) (PA8T), is successfully produced via Novozym 435 (N435)-catalyzed polymerization, using a one-stage method in toluene and a temperature-varied two-stage method in diphenyl ether, respectively. The enzymatic polymerization results in PA8F with high weight-average molecular weight (M̅(w)) up to 54000 g/mol. Studies on the one-stage enzymatic polymerization in toluene indicate that the molecular weights of PA8F increase significantly with the concentration of N435; with an optimal reaction temperature of 90 °C. The temperature-varied, two-stage enzymatic polymerization in diphenyl ether yields PA8F with higher molecular weights, as compared to the one-stage procedure, at higher reaction temperatures. MALDI-ToF MS analysis suggests that eight end groups are present in the obtained PA8F: ester/amine, ester/ester, amine/amine, acid/amine, ester/acid, acid/acid, ester/amide, and no end groups (cyclic). Compared to PA8T, the obtained PA8F possesses a similar Tg and similar crystal structures, a comparable Td, but a lower Tm.


Assuntos
Materiais Biocompatíveis/química , Ácidos Dicarboxílicos/química , Furanos/química , Nylons/química , Polímeros/química , Enzimas Imobilizadas , Proteínas Fúngicas , Temperatura Alta , Lipase/química , Peso Molecular , Polimerização , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
16.
Biomacromolecules ; 16(3): 868-79, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25621935

RESUMO

Biotechnologically accessible 1,4-butanediol and vegetal oil-based diethyl sebacate were copolymerized with bicyclic acetalized D-glucose derivatives (Glux) by polycondensation both in the melt at high temperature and in solution at mild temperature mediated by polymer-supported Candida antarctica lipase B (CALB). Two series of random copolyesters (PB(x)Glux(y)Seb and PBSeb(x)Glux(y)) were prepared differing in which d-glucose derivative (Glux diol or Glux diester) was used as comonomer. The three parent homopolyesters PBSeb, PBGlux, and PGluxSeb were prepared as well. Both methods were found to be effective for polymerization although significant higher molecular weights were achieved by melt polycondensation. The thermal properties displayed by the copolyesters were largely dependent on composition and also on the functionality of the replacing Glux unit. The thermal stability of PBSeb was retained or even slightly increased after copolymerization with Glux, whereas crystallinity and melting temperature were largely depressed. On the contrary, the glass-transition temperature noticeably increased with the content in Glux units. PGluxSeb distinguished in displaying both T(g) and T(m) higher than PBSeb because a different crystal structure is adopted by this homopolyester. The hydrolytic degradability of PBSeb in water was enhanced by copolymerization, in particular, when biodegradation was assisted by lipases.


Assuntos
Butileno Glicóis/química , Ácidos Decanoicos/química , Ácidos Dicarboxílicos/química , Glucose/química , Poliésteres/síntese química , Biocatálise , Proteínas Fúngicas/química , Lipase/química , Polimerização , Soluções
17.
Macromol Rapid Commun ; 36(23): 2097-101, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26437256

RESUMO

A new class of rod-coil block copolymers is synthesized by chemoenzymatic polymerization. In the first step, maltoheptaose, which acts as a primer for the synthesis of amylose, is attached to poly(2-vinyl pyridine) (P2 VP). The enzymatic polymerization of maltoheptaose is carried out by phosphorylase to obtain amylose-b-P2 VP block copolymers. The block copolymer is characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance, gel permeation chromatography, and wide-angle X-ray scattering techniques. The designed molecules combine the inclusion complexation ability of amylose with the supramolecular complexation ability of P2 VP and therefore this kind of rod-coil block copolymers can be used to generate well-organized novel self-assembled structures.


Assuntos
Amilose/química , Amilose/síntese química , Glucanos/química , Polivinil/química , Polivinil/síntese química
18.
Macromol Rapid Commun ; 36(19): 1756-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26249668

RESUMO

The unique mechanical performance of nacre, the pearly internal layer of shells, is highly dependent on its complex morphology. Inspired by the structure of nacre, the fabrication of well-ordered layered inorganic-organic nanohybrids is presented herein. This biomimetic approach includes the use of a block copolymer template, consisting of hydrophobic poly(vinylidene fluoride) (PVDF) lamellae covered with hydrophilic poly(methacrylic acid) (PMAA), to direct silica (SiO2 ) mineralization. The resulting PVDF/PMAA/SiO2 nanohybrid material resembles biogenic nacre with respect to its well-ordered and layered nanostructure, alternating organic-inorganic phases, macromolecular template, and mild processing conditions.


Assuntos
Nácar/química , Nanocompostos/química , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas , Ácidos Polimetacrílicos/química , Polivinil/química , Dióxido de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Phys Chem Chem Phys ; 17(12): 7864-71, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25715960

RESUMO

Inclusion complex formation between lipophilic dye molecules and amylose polymers in starch granules is investigated using laser spectroscopy and microscopy. By combining confocal laser scanning microscopy (CLSM) with spatial resolved photoluminescence (PL) spectroscopy, we are able to discriminate the presence of amylose in the peripheral region of regular and waxy granules from potato and corn starch, associating a clear optical fingerprint with the interaction between starch granules and lipophilic dye molecules. We show in particular that in the case of regular starch the polar head of the lipophilic dye molecules remains outside the amylose helix experiencing a water-based environment. The measurements performed on samples that have been extensively washed provide a strong proof of the specific interaction between lipid dye molecules and amylose chains in regular starch. These measurements also confirm the tendency of longer amylopectin chains, located in the hilum of waxy starch granules, to form inclusion complexes with ligands. Through real-time recording of CLSM micrographs, within a time frame of tens of seconds, we measured the dynamics of occurrence of the inclusion process between lipids and amylose located at the periphery of starch granules.


Assuntos
Amilose/química , Amido/química , Corantes/química , Medições Luminescentes , Microscopia Confocal , Solanum tuberosum/metabolismo
20.
Biomacromolecules ; 15(7): 2482-93, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-24835301

RESUMO

2,5-Bis(hydroxymethyl)furan is a highly valuable biobased rigid diol resembling aromatic monomers in polyester synthesis. In this work, it was enzymatically polymerized with various diacid ethyl esters by Candida antarctica Lipase B (CALB) via a three-stage method. A series of novel biobased furan polyesters with number-average molecular weights (M(n)) around 2000 g/mol were successfully obtained. The chemical structures and physical properties of 2,5-bis(hydroxymethyl)furan-based polyesters were fully characterized. Furthermore, we discussed the effects of the number of the methylene units in the dicarboxylic segments on the physical properties of the furan polyesters.


Assuntos
Proteínas Fúngicas/química , Furanos/química , Lipase/química , Poliésteres/síntese química , Espectroscopia de Ressonância Magnética , Peso Molecular , Polimerização , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA