Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ann Noninvasive Electrocardiol ; 28(5): e13080, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37571804

RESUMO

BACKGROUND: Congenital Long QT Syndrome (LQTS) is a hereditary arrhythmic disorder. We aimed to assess the performance of current genetic variant annotation scores among LQTS patients and their predictive impact. METHODS: We evaluated 2025 patients with unique mutations for LQT1-LQT3. A patient-specific score was calculated for each of four established genetic variant annotation algorithms: CADD, SIFT, REVEL, and PolyPhen-2. The scores were tested for the identification of LQTS and their predictive performance for cardiac events (CE) and life-threatening events (LTE) and then compared with the predictive performance of LQTS categorization based on mutation location/function. Score performance was tested using Harrell's C-index. RESULTS: A total of 917 subjects were classified as LQT1, 838 as LQT2, and 270 as LQT3. The identification of a pathogenic variant occurred in 99% with CADD, 92% with SIFT, 100% with REVEL, and 86% with PolyPhen-2. However, none of the genetic scores correlated with the risk of CE (Harrell's C-index: CADD = 0.50, SIFT = 0.51, REVEL = 0.50, and PolyPhen-2 = 0.52) or LTE (Harrell's C-index: CADD = 0.50, SIFT = 0.53, REVEL = 0.54, and PolyPhen-2 = 0.52). In contrast, high-risk mutation categorization based on location/function was a powerful independent predictor of CE (HR = 1.88; p < .001) and LTE (HR = 1.89, p < .001). CONCLUSION: In congenital LQTS patients, well-established algorithms (CADD, SIFT, REVEL, and PolyPhen-2) were able to identify the majority of the causal variants as pathogenic. However, the scores did not predict clinical outcomes. These results indicate that mutation location/functional assays are essential for accurate interpretation of the risk associated with LQTS mutations.


Assuntos
Eletrocardiografia , Síndrome do QT Longo , Humanos , Genótipo , Síndrome do QT Longo/diagnóstico , Síndrome do QT Longo/genética , Síndrome do QT Longo/complicações
2.
J Mol Cell Cardiol ; 138: 283-290, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785237

RESUMO

The slow voltage-gated potassium channel (IKs) is composed of the KCNQ1 and KCNE1 subunits and is one of the major repolarizing currents in the heart. Activation of protein kinase C (PKC) has been linked to cardiac arrhythmias. Although PKC has been shown to be a regulator of a number of cardiac channels, including IKs, little is known about regulation of the channel by specific isoforms of PKC. Here we studied the role of different PKC isoforms on IKs channel membrane localization and function. Our studies focused on PKC isoforms that translocate to the plasma membrane in response to Gq-coupled receptor (GqPCR) stimulation: PKCα, PKCßI, PKCßII and PKCε. Prolonged stimulation of GqPCRs has been shown to decrease IKs membrane expression, but the specific role of each PKC isoform is unclear. Here we show that stimulation of calcium-dependent isoforms of PKC (cPKC) but not PKCε mimic receptor activation. In addition, we show that general PKCß (LY-333531) and PKCßII inhibitors but not PKCα or PKCßI inhibitors blocked the effect of cPKC on the KCNQ1/KCNE1 channel. PKCß inhibitors also blocked GqPCR-mediated decrease in channel membrane expression in cardiomyocytes. Direct activation of PKCßII using constitutively active PKCßII construct mimicked agonist-induced decrease in membrane expression and channel function, while dominant negative PKCßII showed no effect. This suggests that the KCNQ1/KCNE1 channel was not regulated by basal levels of PKCßII activity. Our results indicate that PKCßII is a specific regulator of IKs membrane localization. PKCßII expression and activation are strongly increased in many disease states, including heart disease and diabetes. Thus, our results suggest that PKCßII inhibition may protect against acquired QT prolongation associated with heart disease.


Assuntos
Membrana Celular/metabolismo , Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteína Quinase C beta/metabolismo , Agonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fenilefrina/farmacologia , Proteína Quinase C beta/antagonistas & inibidores , Ratos
3.
J Mol Cell Cardiol ; 129: 314-325, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30898664

RESUMO

Statins, in addition to their cholesterol lowering effects, can prevent isoprenylation of Rab GTPase proteins, a key protein family for the regulation of protein trafficking. Rab-GTPases have been shown to be involved in the control of membrane expression level of ion channels, including one of the major cardiac repolarizing channels, IKs. Decreased IKs function has been observed in a number of disease states and associated with increased propensity for arrhythmias, but the mechanism underlying IKs decrease remains elusive. Ca2+-dependent PKC isoforms (cPKC) are chronically activated in variety of human diseases and have been suggested to acutely regulate IKs function. We hypothesize that chronic cPKC stimulation leads to Rab-mediated decrease in IKs membrane expression, and that can be prevented by statins. In this study we show that chronic cPKC stimulation caused a dramatic Rab5 GTPase-dependent decrease in plasma membrane localization of the IKs pore forming subunit KCNQ1, reducing IKs function. Our data indicates fluvastatin inhibition of Rab5 restores channel localization and function after cPKC-mediated channel internalization. Our results indicate a novel statin anti-arrhythmic effect that would be expected to inhibit pathological electrical remodeling in a number of disease states associated with high cPKC activation. Because Rab-GTPases are important regulators of membrane trafficking they may underlie other statin pleiotropic effects.


Assuntos
Cálcio/metabolismo , Endocitose , Fluvastatina/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Proteína Quinase C/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Dinaminas/metabolismo , Endocitose/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Modelos Biológicos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos
4.
Ann Noninvasive Electrocardiol ; 23(3): e12537, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29504689

RESUMO

BACKGROUND: A comprehensive report on the clinical course of the three major genotypes of the long QT syndrome (LQTS) in a large U.S. patient cohort is lacking. METHODS: Our study consisted of 1,923 U.S. subjects from the Rochester-based LQTS Registry with genotype-positive LQT1 (n = 879), LQT2 (n = 807), and LQT3 (n = 237). We evaluated the risk of a first cardiac event (syncope, aborted cardiac arrest, or sudden cardiac death, whichever occurred first) from birth through age 50 years. Cox proportional hazards regression models incorporating clinical covariates were used to assess genotype-specific risk of cardiac events. RESULTS: For all three genotypes, the cumulative probability of a first cardiac event increased most markedly during adolescence. Multivariate analysis identified proband status and QTc > 500 ms as predictors of cardiac events in all three genotypes, and males <14 years and females >14 years as predictors of cardiac events in LQT1 and LQT2 only. Beta-blockers significantly reduced the risk of cardiac events in LQT1 (HR: 0.49, p = .002) and LQT2 patients (HR: 0.48, p = .001). A trend toward beta-blocker benefit in reducing cardiac events was found in LQT3 females (HR: 0.32, p = .078), but not in LQT3 males (HR: 1.37, p = .611). CONCLUSION: Risk factors and outcomes in LQTS patients varied by genotype. In all three genotypes, proband status and prolonged QTc were risk factors for cardiac events. Younger males and older females experienced increased risk in LQT1 and LQT2 only. Beta-blockers were most effective in reducing cardiac events in LQT1 and LQT2, with a potential benefit in LQT3 females.


Assuntos
Eletrocardiografia , Genótipo , Síndrome do QT Longo/genética , Síndrome do QT Longo/fisiopatologia , Adolescente , Adulto , Fatores Etários , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , New York , Modelos de Riscos Proporcionais , Sistema de Registros , Fatores de Risco , Fatores Sexuais , Adulto Jovem
5.
Circulation ; 134(12): 872-82, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27566755

RESUMO

BACKGROUND: Risk stratification in patients with type 3 long-QT syndrome (LQT3) by clinical and genetic characteristics and effectiveness of ß-blocker therapy has not been studied previously in a large LQT3 population. METHODS: The study population included 406 LQT3 patients with 51 sodium channel mutations; 391 patients were known to be event free during the first year of life and were the focus of our study. Clinical, electrocardiographic, and genetic parameters were acquired for patients from 7 participating LQT3 registries. Cox regression analysis was used to evaluate the independent contribution of clinical, genetic, and therapeutic factors to the first occurrence of time-dependent cardiac events (CEs) from age 1 to 41 years. RESULTS: Of the 391 patients, 118 (41 males, 77 females) patients (30%) experienced at least 1 CE (syncope, aborted cardiac arrest, or long-QT syndrome-related sudden death), and 24 (20%) suffered from LQT3-related aborted cardiac arrest/sudden death. The risk of a first CE was directly related to the degree of QTc prolongation. Cox regression analysis revealed that time-dependent ß-blocker therapy was associated with an 83% reduction in CEs in females (P=0.015) but not in males (who had many fewer events), with a significant sex × ß-blocker interaction (P=0.04). Each 10-ms increase in QTc duration up to 500 ms was associated with a 19% increase in CEs. Prior syncope doubled the risk for life-threatening events (P<0.02). CONCLUSIONS: Prolonged QTc and syncope predispose patients with LQT3 to life-threatening CEs. However, ß-blocker therapy reduces this risk in females; efficacy in males could not be determined conclusively because of the low number of events.


Assuntos
Síndrome do QT Longo/tratamento farmacológico , Adolescente , Antagonistas Adrenérgicos beta/uso terapêutico , Adulto , Doença do Sistema de Condução Cardíaco , Criança , Pré-Escolar , Eletrocardiografia/métodos , Feminino , Parada Cardíaca/tratamento farmacológico , Parada Cardíaca/etiologia , Humanos , Lactente , Síndrome do QT Longo/diagnóstico , Masculino , Sistema de Registros , Medição de Risco , Caracteres Sexuais , Canais de Sódio/genética , Síncope/complicações , Síncope/tratamento farmacológico , Adulto Jovem
6.
J Mol Cell Cardiol ; 79: 203-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25479336

RESUMO

BACKGROUND: The most common inherited cardiac arrhythmia, LQT1, is due to IKs potassium channel mutations and is linked to high risk of adrenergic-triggered cardiac events. We recently showed that although exercise-triggered events are very well treated by ß-blockers for these patients, acute arousal-triggered event rate were not significantly reduced after beta-blocker treatment, suggesting that the mechanisms underlying arousal-triggered arrhythmias may be different from those during exercise. IKs is strongly regulated by ß-adrenergic receptor (ß-AR) signaling, but little is known about the role of α1-AR-mediated regulation. METHODS AND RESULTS: Here we show, using a combination of cellular electrophysiology and computational modeling, that IKs phosphorylation and α1-AR regulation via activation of calcium-dependent PKC isoforms (cPKC) may be a key mechanism to control channel voltage-dependent activation and consequently action potential duration (APD) in response to adrenergic-stimulus. We show that simulated mutation-specific combined adrenergic effects (ß+α) on APD were strongly correlated to acute stress-triggered cardiac event rate for patients while ß-AR effects alone were not. CONCLUSION: We were able to show that calcium-dependent PKC signaling is key to normal QT shortening during acute arousal and when impaired, correlates with increased rate of sudden arousal-triggered cardiac events. Our study suggests that the acute α1-AR-cPKC regulation of IKs is important for QT shortening in "fight-or-flight" response and is linked to decreased risk of sudden emotion/arousal-triggered cardiac events in LQT1 patients.


Assuntos
Nível de Alerta , Cálcio/metabolismo , Emoções , Ativação do Canal Iônico , Canal de Potássio KCNQ1/metabolismo , Síndrome do QT Longo/fisiopatologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteína Quinase C/metabolismo , Potenciais de Ação , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Isoenzimas/metabolismo , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/genética , Proteínas Mutantes/metabolismo , Mutação/genética , Fosforilação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Modelos de Riscos Proporcionais , Receptores Adrenérgicos alfa/metabolismo , Receptores Adrenérgicos beta/metabolismo , Fatores de Risco , Transdução de Sinais
7.
Biochem Biophys Res Commun ; 465(3): 464-70, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26277396

RESUMO

Protein kinase C (PKC) plays key roles in the regulation of signal transduction and cellular function in various cell types. At least ten PKC isoforms have been identified and intracellular localization and trafficking of these individual isoforms are important for regulation of enzyme activity and substrate specificity. PKC can be activated downstream of Gq-protein coupled receptor (GqPCR) signaling and translocate to various cellular compartments including plasma membrane (PM). Recent reports suggested that different types of GqPCRs would activate different PKC isoforms (classic, novel and atypical PKCs) with different trafficking patterns. However, the knowledge of isoform-specific activation of PKC by each GqPCR is limited. α1-Adrenoceptor (α1-AR) is one of the GqPCRs highly expressed in the cardiovascular system. In this study, we examined the isoform-specific dynamic translocation of PKC in living HEK293T cells by α1-AR stimulation (α1-ARS). Rat PKCα, ßI, ßII, δ, ε and ζ fused with GFP at C-term were co-transfected with human α1A-AR into HEK293T cells. The isoform-specific dynamic translocation of PKC in living HEK293T cells by α1-ARS using phenylephrine was measured by confocal microscopy. Before stimulation, GFP-PKCs were localized at cytosolic region. α1-ARS strongly and rapidly translocated a classical PKC (cPKC), PKCα, (<30 s) to PM, with PKCα returning diffusively into the cytosol within 5 min. α1-ARS rapidly translocated other cPKCs, PKCßI and PKCßII, to the PM (<30 s), with sustained membrane localization. One novel PKC (nPKC), PKCε, but not another nPKC, PKCδ, was translocated by α1-AR stimulation to the PM (<30 s) and its membrane localization was also sustained. Finally, α1-AR stimulation did not cause a diacylglycerol-insensitive atypical PKC, PKCζ translocation. Our data suggest that PKCα, ß and ε activation may underlie physiological and pathophysiological responses of α1-AR signaling for the phosphorylation of membrane-associated substrates including ion-channel and transporter proteins in the cardiovascular system.


Assuntos
Membrana Celular/metabolismo , Proteína Quinase C/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Transdução de Sinais/fisiologia , Células HEK293 , Humanos , Isoformas de Proteínas/metabolismo , Transporte Proteico/fisiologia
8.
Circ Res ; 110(1): 59-70, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22076634

RESUMO

RATIONALE: The Rad-Gem/Kir-related family (RGKs) consists of small GTP-binding proteins that strongly inhibit the activity of voltage-gated calcium channels. Among RGKs, Rem1 is strongly and specifically expressed in cardiac tissue. However, the physiological role and regulation of RGKs, and Rem1 in particular, are largely unknown. OBJECTIVE: To determine if Rem1 function is physiologically regulated by adrenergic signaling and thus impacts voltage-gated L-type calcium channel (VLCC) activity in the heart. METHODS AND RESULTS: We found that activation of protein kinase D1, a protein kinase downstream of α(1)-adrenergic signaling, leads to direct phosphorylation of Rem1 at Ser18. This results in an increase of the channel activity and plasma membrane expression observed by using a combination of electrophysiology, live cell confocal microscopy, and immunohistochemistry in heterologous expression system and neonatal cardiomyocytes. In addition, we show that stimulation of α(1)-adrenergic receptor-protein kinase D1-Rem1 signaling increases transverse-tubule VLCC expression that results in increased L-type Ca(2+) current density in adult ventricular myocytes. CONCLUSION: The α(1)-adrenergic stimulation releases Rem1 inhibition of VLCCs through direct phosphorylation of Rem1 at Ser18 by protein kinase D1, resulting in an increase of the channel activity and transverse-tubule expression. Our results uncover a novel molecular regulatory mechanism of VLCC trafficking and function in the heart and provide the first demonstration of physiological regulation of RGK function.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Miócitos Cardíacos/fisiologia , Proteínas Quinases/fisiologia , Transporte Proteico/fisiologia , Receptores Adrenérgicos alfa 1/fisiologia , Transdução de Sinais/fisiologia , Animais , Membrana Celular/fisiologia , Células Cultivadas , Masculino , Microtúbulos/fisiologia , Modelos Animais , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Miócitos Cardíacos/citologia , Técnicas de Patch-Clamp , Fosforilação , Proteína Quinase C , Ratos , Ratos Sprague-Dawley
9.
Circulation ; 125(16): 1988-96, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22456477

RESUMO

BACKGROUND: ß-Adrenergic stimulation is the main trigger for cardiac events in type 1 long-QT syndrome (LQT1). We evaluated a possible association between ion channel response to ß-adrenergic stimulation and clinical response to ß-blocker therapy according to mutation location. METHODS AND RESULTS: The study sample comprised 860 patients with genetically confirmed mutations in the KCNQ1 channel. Patients were categorized into carriers of missense mutations located in the cytoplasmic loops (C loops), membrane-spanning domain, C/N terminus, and nonmissense mutations. There were 27 aborted cardiac arrest and 78 sudden cardiac death events from birth through 40 years of age. After multivariable adjustment for clinical factors, the presence of C-loop mutations was associated with the highest risk for aborted cardiac arrest or sudden cardiac death (hazard ratio versus nonmissense mutations=2.75; 95% confidence interval, 1.29-5.86; P=0.009). ß-Blocker therapy was associated with a significantly greater reduction in the risk of aborted cardiac arrest or sudden cardiac death among patients with C-loop mutations than among all other patients (hazard ratio=0.12; 95% confidence interval, 0.02-0.73; P=0.02; and hazard ratio=0.82; 95% confidence interval, 0.31-2.13; P=0.68, respectively; P for interaction=0.04). Cellular expression studies showed that membrane spanning and C-loop mutations produced a similar decrease in current, but only C-loop mutations showed a pronounced reduction in channel activation in response to ß-adrenergic stimulation. CONCLUSIONS: Patients with C-loop missense mutations in the KCNQ1 channel exhibit a high risk for life-threatening events and derive a pronounced benefit from treatment with ß-blockers. Reduced channel activation after sympathetic activation can explain the increased clinical risk and response to therapy in patients with C-loop mutations.


Assuntos
Canal de Potássio KCNQ1/genética , Mutação , Síndrome de Romano-Ward/genética , Adolescente , Antagonistas Adrenérgicos beta/uso terapêutico , Adulto , Criança , Feminino , Predisposição Genética para Doença , Parada Cardíaca/tratamento farmacológico , Parada Cardíaca/genética , Humanos , Masculino , Risco , Síndrome de Romano-Ward/tratamento farmacológico , Resultado do Tratamento , Adulto Jovem
10.
Circ Res ; 106(7): 1190-6, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20185796

RESUMO

RATIONALE: The mitochondrial ATP sensitive potassium channel (mK(ATP)) is implicated in cardioprotection by ischemic preconditioning (IPC), but the molecular identity of the channel remains controversial. The validity of current methods to assay mK(ATP) activity is disputed. OBJECTIVE: We sought to develop novel methods to assay mK(ATP) activity and its regulation. METHODS AND RESULTS: Using a thallium (Tl(+))-sensitive fluorophore, we developed a novel Tl(+) flux based assay for mK(ATP) activity, and used this assay probe several aspects of mK(ATP) function. The following key observations were made. (1) Time-dependent run down of mK(ATP) activity was reversed by phosphatidylinositol-4,5-bisphosphate (PIP(2)). (2) Dose responses of mK(ATP) to nucleotides revealed a UDP EC(50) of approximately 20 micromol/L and an ATP IC(50) of approximately 5 micromol/L. (3) The antidepressant fluoxetine (Prozac) inhibited mK(ATP) (IC(50)=2.4 micromol/L). Fluoxetine also blocked cardioprotection triggered by IPC, but did not block protection triggered by a mK(ATP)-independent stimulus. The related antidepressant zimelidine was without effect on either mK(ATP) or IPC. CONCLUSIONS: The Tl(+) flux mK(ATP) assay was validated by correlation with a classical mK(ATP) channel osmotic swelling assay (R(2)=0.855). The pharmacological profile of mK(ATP) (response to ATP, UDP, PIP(2), and fluoxetine) is consistent with that of an inward rectifying K(+) channel (K(IR)) and is somewhat closer to that of the K(IR)6.2 than the K(IR)6.1 isoform. The effect of fluoxetine on mK(ATP)-dependent cardioprotection has implications for the growing use of antidepressants in patients who may benefit from preconditioning.


Assuntos
Bioensaio/métodos , Mitocôndrias Cardíacas/metabolismo , Canais de Potássio/metabolismo , Potássio/metabolismo , Espectrometria de Fluorescência , Tálio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antidepressivos de Segunda Geração/farmacologia , Benzotiazóis , Cumarínicos , Corantes Fluorescentes , Fluoxetina/farmacologia , Glicina/análogos & derivados , Técnicas In Vitro , Precondicionamento Isquêmico Miocárdico , Cinética , Masculino , Mitocôndrias Cardíacas/efeitos dos fármacos , Dilatação Mitocondrial , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Osmose , Perfusão , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Difosfato de Uridina/metabolismo
11.
Circ Res ; 107(4): 532-9, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20576935

RESUMO

RATIONALE: Excess signaling through cardiac Gbetagamma subunits is an important component of heart failure (HF) pathophysiology. They recruit elevated levels of cytosolic G protein-coupled receptor kinase (GRK)2 to agonist-stimulated beta-adrenergic receptors (beta-ARs) in HF, leading to chronic beta-AR desensitization and downregulation; these events are all hallmarks of HF. Previous data suggested that inhibiting Gbetagamma signaling and its interaction with GRK2 could be of therapeutic value in HF. OBJECTIVE: We sought to investigate small molecule Gbetagamma inhibition in HF. METHODS AND RESULTS: We recently described novel small molecule Gbetagamma inhibitors that selectively block Gbetagamma-binding interactions, including M119 and its highly related analog, gallein. These compounds blocked interaction of Gbetagamma and GRK2 in vitro and in HL60 cells. Here, we show they reduced beta-AR-mediated membrane recruitment of GRK2 in isolated adult mouse cardiomyocytes. Furthermore, M119 enhanced both adenylyl cyclase activity and cardiomyocyte contractility in response to beta-AR agonist. To evaluate their cardiac-specific effects in vivo, we initially used an acute pharmacological HF model (30 mg/kg per day isoproterenol, 7 days). Concurrent daily injections prevented HF and partially normalized cardiac morphology and GRK2 expression in this acute HF model. To investigate possible efficacy in halting progression of preexisting HF, calsequestrin cardiac transgenic mice (CSQ) with extant HF received daily injections for 28 days. The compound alone halted HF progression and partially normalized heart size, morphology, and cardiac expression of HF marker genes (GRK2, atrial natriuretic factor, and beta-myosin heavy chain). CONCLUSIONS: These data suggest a promising therapeutic role for small molecule inhibition of pathological Gbetagamma signaling in the treatment of HF.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/antagonistas & inibidores , Subunidades gama da Proteína de Ligação ao GTP/antagonistas & inibidores , Insuficiência Cardíaca/prevenção & controle , Transdução de Sinais/fisiologia , Animais , Cicloexanos/farmacologia , Cicloexanos/uso terapêutico , Progressão da Doença , Feminino , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Células HL-60 , Insuficiência Cardíaca/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Miócitos Cardíacos , Transdução de Sinais/efeitos dos fármacos , Xantenos/farmacologia , Xantenos/uso terapêutico , Xenopus
12.
J Cardiovasc Electrophysiol ; 22(2): 193-200, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20662986

RESUMO

UNLABELLED: BACKGROUND: Data regarding possible ion channel mechanisms that predispose to ventricular tachyarrhythmias in patients with phenotype-negative long-QT syndrome (LQTS) are limited. METHODS AND RESULTS: We carried out cellular expression studies for the S349W mutation in the KCNQ1 channel, which was identified in 15 patients from the International LQTS Registry who experienced a high rate of cardiac events despite lack of significant QTc prolongation. The clinical outcome of S349W mutation carriers was compared with that of QTc-matched carriers of haploinsufficient missense (n = 30) and nonsense (n = 45) KCNQ1 mutations. The channels containing the mutant S349W subunit showed a mild reduction in current (<50%), in the haploinsuficient range, with an increase in maximal conductance compared with wild-type channels. In contrast, expression of the S349W mutant subunit produced a pronounced effect on both the voltage dependence of activation and the time constant of activation, while haploinsuficient channels showed no effect on either parameter. The cumulative probability of cardiac events from birth through age 20 years was significantly higher among S349W mutation carriers (58%) as compared with carriers of QTc-matched haploinsufficent missense (21%, P = 0.004) and nonsense (25%, P = 0.01) mutations. CONCLUSIONS: The S349W mutation in the KCNQ1 potassium channel exerts a relatively mild effect on the ion channel current, whereas an increase in conductance compensates for impaired voltage activation of the channel. The changes observed in voltage activation of the channel may underlie the mechanisms predisposing to arrhythmic risk among LQTS patients with a normal-range QTc.


Assuntos
Morte Súbita Cardíaca , Predisposição Genética para Doença/genética , Ativação do Canal Iônico/genética , Canal de Potássio KCNQ1/genética , Síndrome do QT Longo/genética , Criança , Feminino , Genótipo , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único
13.
J Am Soc Nephrol ; 21(12): 2117-29, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21088294

RESUMO

SeSAME/EAST syndrome is a channelopathy consisting of a hypokalemic, hypomagnesemic, metabolic alkalosis associated with seizures, sensorineural deafness, ataxia, and developmental abnormalities. This disease links to autosomal recessive mutations in KCNJ10, which encodes the Kir4.1 potassium channel, but the functional consequences of these mutations are not well understood. In Xenopus oocytes, all of the disease-associated mutant channels (R65P, R65P/R199X, G77R, C140R, T164I, and A167V/R297C) had decreased K(+) current (0 to 23% of wild-type levels). Immunofluorescence demonstrated decreased surface expression of G77R, C140R, and A167V expressed in HEK293 cells. When we coexpressed mutant and wild-type subunits to mimic the heterozygous state, R199X, C140R, and G77R currents decreased to 55, 40, and 20% of wild-type levels, respectively, suggesting that carriers of these mutations may present with an abnormal phenotype. Because Kir4.1 subunits can form heteromeric channels with Kir5.1, we coexpressed the aforementioned mutants with Kir5.1 and found that currents were reduced at least as much as observed when we expressed mutants alone. Reduction of pH(i) from approximately 7.4 to 6.8 significantly decreased currents of all mutants except R199X but did not affect wild-type channels. In conclusion, perturbed pH gating may underlie the loss of channel function for the disease-associated mutant Kir4.1 channels and may have important physiologic consequences.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Perda Auditiva Neurossensorial/genética , Canal de Potássio Kv1.1/genética , Mutação , Convulsões/genética , Alcalose/genética , Alcalose/fisiopatologia , Análise de Variância , Animais , Ataxia/genética , Ataxia/fisiopatologia , Imunofluorescência , Predisposição Genética para Doença , Células HEK293/metabolismo , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Hipopotassemia/genética , Hipopotassemia/fisiopatologia , Immunoblotting , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Modelos Animais , Biologia Molecular , Oócitos , Convulsões/fisiopatologia , Síndrome , Xenopus laevis
14.
Commun Biol ; 4(1): 1392, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907346

RESUMO

Plasma membrane phosphatidylinositol 4-phosphate (PI4P) is a precursor of PI(4,5)P2, an important regulator of a large number of ion channels. Although the role of the phospholipid PI(4,5)P2 in stabilizing ion channel function is well established, little is known about the role of phospholipids in channel membrane localization and specifically the role of PI4P in channel function and localization. The phosphatidylinositol 4-kinases (PI4Ks) synthesize PI4P. Our data show that inhibition of PI4K and prolonged decrease of levels of plasma membrane PI4P lead to a decrease in the KCNQ1/KCNE1 channel membrane localization and function. In addition, we show that mutations linked to Long QT syndrome that affect channel interactions with phospholipids lead to a decrease in membrane expression. We show that expression of a LQT1-associated C-terminal deletion mutant abolishes PI4Kinase-mediated decrease in membrane expression and rescues membrane expression for phospholipid-targeting mutations. Our results indicate a novel role for PI4P on ion channel regulation. Our data suggest that decreased membrane PI4P availability to the channel, either due to inhibition of PI4K or as consequence of mutations, dramatically inhibits KCNQ1/KCNE1 channel membrane localization and current. Our results may have implications to regulation of other PI4P binding channels.


Assuntos
Membrana Celular/metabolismo , Canal de Potássio KCNQ1/genética , Fosfatos de Fosfatidilinositol/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Animais , Feminino , Canal de Potássio KCNQ1/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ratos , Ratos Sprague-Dawley
15.
J Am Heart Assoc ; 10(14): e021088, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34238014

RESUMO

Background We aimed to provide personalized risk estimates for cardiac events (CEs) and life-threatening events in women with either type 1 or type 2 long QT. Methods and Results The prognostic model was derived from the Rochester Long QT Syndrome Registry, comprising 767 women with type 1 long QT (n=404) and type 2 long QT (n=363) from age 15 through 60 years. The risk prediction model included the following variables: genotype/mutation location, QTc-specific thresholds, history of syncope, and ß-blocker therapy. A model was developed with the end point of CEs (syncope, aborted cardiac arrest, or long QT syndrome-related sudden cardiac death), and was applied with the end point of life-threatening events (aborted cardiac arrest, sudden cardiac death, or appropriate defibrillator shocks). External validation was performed with data from the Mayo Clinic Genetic Heart Rhythm Clinic (N=467; type 1 long QT [n=286] and type 2 long QT [n=181]). The cumulative follow-up duration among the 767 enrolled women was 22 243 patient-years, during which 323 patients (42%) experienced ≥1 CE. Based on genotype-phenotype data, we identified 3 risk groups with 10-year projected rates of CEs ranging from 15%, 29%, to 51%. The corresponding 10-year projected rates of life-threatening events were 2%, 5%, and 14%. C statistics for the prediction model for the 2 respective end points were 0.68 (95% CI 0.65-0.71) and 0.71 (95% CI 0.66-0.76). Corresponding C statistics for the model in the external validation Mayo Clinic cohort were 0.65 (95% CI 0.60-0.70) and 0.77 (95% CI 0.70-0.84). Conclusions This is the first risk prediction model that provides absolute risk estimates for CEs and life-threatening events in women with type 1 or type 2 long QT based on personalized genotype-phenotype data. The projected risk estimates can be used to guide female-specific management in long QT syndrome.


Assuntos
Morte Súbita Cardíaca/epidemiologia , Síndrome do QT Longo/congênito , Sistema de Registros , Medição de Risco/métodos , Adolescente , Adulto , Eletrocardiografia , Feminino , Genótipo , Humanos , Incidência , Síndrome do QT Longo/epidemiologia , Síndrome do QT Longo/genética , Pessoa de Meia-Idade , Fenótipo , Fatores de Risco , Taxa de Sobrevida/tendências , Estados Unidos/epidemiologia , Adulto Jovem
16.
J Electrocardiol ; 43(5): 396-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20728018

RESUMO

The short and long QT syndromes are inherited diseases associated with an increased risk for life-threatening arrhythmias. The first case of long QT syndrome (LQTS) was reported more than 150 years ago, and the study of this disease led to crucial advancement of our understanding of channelopathies and associated ventricular arrhythmias. Ten years ago, Gussak et al. reported four cases of idiopathic ventricular fibrillation in individuals from a family with a history of sudden cardiac death exhibited very short QT interval and labeled the disease: short QT syndrome (SQTS). Over this decade, the SQTS was found to be a rare inherited syndrome with the potential to provide novel insights into the main mechanisms of cardiac arrhythmogenicity. In this review, we discuss these mechanisms and provocatively question the role of the QT interval duration as a surrogate marker of increased risk for arrhythmia in both the LQTS and the SQTS.


Assuntos
Arritmias Cardíacas/fisiopatologia , Canalopatias/fisiopatologia , Arritmias Cardíacas/complicações , Arritmias Cardíacas/genética , Canalopatias/complicações , Canalopatias/genética , Morte Súbita Cardíaca/etiologia , Eletrocardiografia , Humanos , Síndrome do QT Longo/complicações , Síndrome do QT Longo/genética , Síndrome do QT Longo/fisiopatologia , Mutação , Canais de Potássio/genética , Fatores de Risco
17.
PLoS One ; 15(8): e0237591, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32833978

RESUMO

The slow cardiac delayed rectifier current (IKs) is formed by KCNQ1 and KCNE1 subunits and is one of the major repolarizing currents in the heart. Decrease of IKs currents either due to inherited mutations or pathological remodeling is associated with increased risk for cardiac arrhythmias and sudden death. Ca2+-dependent PKC isoforms (cPKC) are chronically activated in heart disease and diabetes. Recently, we found that sustained stimulation of the calcium-dependent PKCßII isoform leads to decrease in KCNQ1 subunit membrane localization and KCNQ1/KCNE1 channel activity, although the role of KCNE1 in this regulation was not explored. Here, we show that the auxiliary KCNE1 subunit expression is necessary for channel internalization. A mutation in a KCNE1 phosphorylation site (KCNE1(S102A)) abolished channel internalization in both heterologous expression systems and cardiomyocytes. Altogether, our results suggest that KCNE1(S102) phosphorylation by PKCßII leads to KCNQ1/KCNE1 channel internalization in response to sustained PKC stimulus, while leaving KCNQ1 homomeric channels in the membrane. This preferential internalization is expected to have strong impact on cardiac repolarization. Our results suggest that KCNE1(S102) is an important anti-arrhythmic drug target to prevent IKs pathological remodeling leading to cardiac arrhythmias.


Assuntos
Cálcio/metabolismo , Canal de Potássio KCNQ1/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteína Quinase C/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Canal de Potássio KCNQ1/genética , Mutação , Miócitos Cardíacos/citologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Proteína Quinase C/genética , Ratos
18.
J Mol Cell Cardiol ; 46(5): 704-12, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19233191

RESUMO

KCNQ1 is co-assembled with KCNE1 subunits in the heart to form the cardiac delayed rectifier K(+) current (IKs), which is one of the main currents responsible for myocyte repolarization. The most commonly inherited form of cardiac arrhythmias, long-QT syndrome type 1 (LQT1), is due to mutations on KCNQ1. Gq-coupled receptors (GqPCRs) are known to mediate positive inotropism in human ventricular myocardium. The mechanism of IKs current modulation by GqPCRs remains incompletely understood. Here we studied the molecular mechanisms underlying Gq regulation of the IKs channel. Heterologously expressed IKs (human KCNQ1/KCNE1 subunits) was measured in Xenopus oocytes, expressed together with GqPCRs. Our data from several GqPCRs shows that IKs is regulated in a biphasic manner, showing both an activation and an inhibition phase. Receptor-mediated inhibition phase was irreversible when recycling of agonist-sensitive pools of phosphatidylinositol-4,5-bisphosphate (PIP2) was blocked by the lipid kinase inhibitor wortmannin. In addition, stimulation of PIP(2) production, by overexpression of phosphatidylinositol-4-phosphate-5-kinase (PIP5-kinase), decreased receptor-mediated inhibition. The receptor-mediated activation phase was inhibited by the PKC inhibitor calphostin C and by a mutation in a putative PKC phosphorylation site in the KCNE1 subunit. Our results indicate that the depletion of membrane PIP(2) underlies receptor-mediated inhibition of IKs and that phosphorylation by PKC of the KCNE1 subunit underlies the GqPCR-mediated channel activation.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Ativação do Canal Iônico , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canais de Potássio/metabolismo , Proteína Quinase C/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Acetilcolina/farmacologia , Animais , Cálcio/metabolismo , Ativação Enzimática/efeitos dos fármacos , Humanos , Hidrólise/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Xenopus
19.
J Cardiovasc Electrophysiol ; 20(8): 859-65, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19490272

RESUMO

BACKGROUND: Type-1 long-QT syndrome (LQT1) is caused by mutations in the KCNQ1 gene. The purpose of this study was to investigate whether KCNQ1 mutations in highly conserved amino acid residues within the voltage-gated potassium channel family are associated with an increased risk of cardiac events. METHODS AND RESULTS: The study population involved 492 LQT1 patients with 54 missense mutations in the transmembrane region of the KCNQ1 channel. The amino acid sequences of the transmembrane region of 38 human voltage-gated potassium channels were aligned. An adjusted Shannon entropy score for each amino acid residue was calculated ranging from 0 (no conservation) to 1.0 (full conservation). Cox analysis was used to identify independent factors associated with the first cardiac event (syncope, aborted cardiac arrest, or death). Patients were subcategorized into tertiles by their adjusted Shannon entropy scores. The lowest tertile (score 0-0.469; n = 146) was used as a reference group; patients with intermediate tertile scores (0.470-0.665; n = 150) had no increased risk of cardiac events (HR = 1.19, P = 0.42) or aborted cardiac arrest/sudden cardiac death (HR = 1.58, P = 0.26), and those with the highest tertile scores (>0.665; n = 196) showed significantly increased risk of cardiac events (HR = 3.32, P <0.001) and aborted cardiac arrest/sudden cardiac death (HR = 2.62, P = 0.04). The increased risk in patients with the highest conservation scores was independent of QTc, gender, age, and beta-blocker therapy. CONCLUSIONS: Mutations in highly conserved amino acid residues in the KCNQ1 gene are associated with a significant risk of cardiac events independent of QTc, gender, and beta-blocker therapy.


Assuntos
Sequência Conservada , Canal de Potássio KCNQ1/genética , Mutação de Sentido Incorreto/genética , Síndrome de Romano-Ward/genética , Adolescente , Adulto , Sequência de Aminoácidos , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/genética , Criança , Pré-Escolar , Biologia Computacional/métodos , Feminino , Seguimentos , Humanos , Lactente , Recém-Nascido , Masculino , Dados de Sequência Molecular , Fatores de Risco , Síndrome de Romano-Ward/etiologia , Adulto Jovem
20.
Nat Neurosci ; 8(5): 626-34, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15852009

RESUMO

The subjective feeling of cold is mediated by the activation of TRPM8 channels in thermoreceptive neurons by cold or by cooling agents such as menthol. Here, we demonstrate a central role for phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) in the activation of recombinant TRPM8 channels by both cold and menthol. Moreover, we show that Ca(2+) influx through these channels activates a Ca(2+)-sensitive phospholipase C and that the subsequent depletion of PI(4,5)P(2) limits channel activity, serving as a unique mechanism for desensitization of TRPM8 channels. Finally, we find that mutation of conserved positive residues in the highly conserved proximal C-terminal TRP domain of TRPM8 and two other family members, TRPM5 and TRPV5, reduces the sensitivity of the channels for PI(4,5)P(2) and increases inhibition by PI(4,5)P(2) depletion. These data suggest that the TRP domain of these channels may serve as a PI(4,5)P(2)-interacting site and that regulation by PI(4,5)P(2) is a common feature of members of the TRP channel family.


Assuntos
Temperatura Baixa , Canais Iônicos/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Células Receptoras Sensoriais/metabolismo , Sensação Térmica/fisiologia , Animais , Células COS , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Chlorocebus aethiops , Canais Iônicos/genética , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mentol/farmacologia , Mutação/fisiologia , Proteínas de Neoplasias/genética , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/fisiologia , Células Receptoras Sensoriais/efeitos dos fármacos , Canais de Cátion TRPV , Sensação Térmica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA