Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neuroendocrinology ; 112(2): 101-114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33640887

RESUMO

The average age for pubertal onset in girls has declined over recent decades. Epidemiological studies in humans and experimental studies in animals suggest a causal role for endocrine disrupting chemicals (EDCs) that are present in our environment. Of concern, current testing and screening regimens are inadequate in identifying EDCs that may affect pubertal maturation, not least because they do not consider early-life exposure. Also, the causal relationship between EDC exposure and pubertal timing is still a matter of debate. To address this issue, we have used current knowledge to elaborate a network of putative adverse outcome pathways (pAOPs) to identify how chemicals can affect pubertal onset. By using the AOP framework, we highlight current gaps in mechanistic understanding that need to be addressed and simultaneously point towards events causative of pubertal disturbance that could be exploited for alternative test methods. We propose 6 pAOPs that could explain the disruption of pubertal timing by interfering with the central hypothalamic trigger of puberty, GnRH neurons, and by so doing highlight specific modes of action that could be targeted for alternative test method development.


Assuntos
Rotas de Resultados Adversos , Disruptores Endócrinos/efeitos adversos , Puberdade Precoce/induzido quimicamente , Puberdade Precoce/metabolismo , Feminino , Humanos
2.
Front Endocrinol (Lausanne) ; 14: 1140886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077353

RESUMO

Introduction: Estrogenic endocrine disrupting chemicals (EDCs) such as diethylstilbestrol (DES) are known to alter the timing of puberty onset and reproductive function in females. Accumulating evidence suggests that steroid synthesis inhibitors such as ketoconazole (KTZ) or phthalates may also affect female reproductive health, however their mode of action is poorly understood. Because hypothalamic activity is very sensitive to sex steroids, we aimed at determining whether and how EDCs with different mode of action can alter the hypothalamic transcriptome and GnRH release in female rats. Design: Female rats were exposed to KTZ or DES during perinatal (DES 3-6-12µg/kg.d; KTZ 3-6-12mg/kg.d), pubertal or adult periods (DES 3-12-48µg/kg.d; KTZ 3-12-48mg/kg.d). Results: Ex vivo study of GnRH pulsatility revealed that perinatal exposure to the highest doses of KTZ and DES delayed maturation of GnRH secretion before puberty, whereas pubertal or adult exposure had no effect on GnRH pulsatility. Hypothalamic transcriptome, studied by RNAsequencing in the preoptic area and in the mediobasal hypothalamus, was found to be very sensitive to perinatal exposure to all doses of KTZ before puberty with effects persisting until adulthood. Bioinformatic analysis with Ingenuity Pathway Analysis predicted "Creb signaling in Neurons" and "IGF-1 signaling" among the most downregulated pathways by all doses of KTZ and DES before puberty, and "PPARg" as a common upstream regulator driving gene expression changes. Deeper screening ofRNAseq datasets indicated that a high number of genes regulating the activity of the extrinsic GnRH pulse generator were consistently affected by all the doses of DES and KTZ before puberty. Several, including MKRN3, DNMT3 or Cbx7, showed similar alterations in expression at adulthood. Conclusion: nRH secretion and the hypothalamic transcriptome are highly sensitive to perinatal exposure to both DES and KTZ. The identified pathways should be exploredfurther to identify biomarkers for future testing strategies for EDC identification and when enhancing the current standard information requirements in regulation.


Assuntos
Fungicidas Industriais , Gravidez , Ratos , Animais , Feminino , Fungicidas Industriais/metabolismo , Fungicidas Industriais/farmacologia , Cetoconazol/farmacologia , Maturidade Sexual/fisiologia , Hipotálamo/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo
3.
Front Endocrinol (Lausanne) ; 13: 1073759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686420

RESUMO

Introduction: During hypothalamic development, the germinative neuroepithelium gives birth to diverse neural cells that regulate numerous physiological functions in adulthood. Methods: Here, we studied the ontogeny of ependymal cells in the mouse mediobasal hypothalamus using the BrdU approach and publicly available single-cell RNAseq datasets. Results: We observed that while typical ependymal cells are mainly produced at E13, tanycyte birth depends on time and subtypes and lasts up to P8. Typical ependymocytes and ß tanycytes are the first to arise at the top and bottom of the dorsoventral axis around E13, whereas α tanycytes emerge later in development, generating an outside-in dorsoventral gradient along the third ventricle. Additionally, α tanycyte generation displayed a rostral-to-caudal pattern. Finally, tanycytes mature progressively until they reach transcriptional maturity between P4 and P14. Discussion: Altogether, this data shows that ependyma generation differs in time and distribution, highlighting the heterogeneity of the third ventricle.


Assuntos
Células Ependimogliais , Terceiro Ventrículo , Camundongos , Animais , Neuroglia , Neurônios , Neurogênese
4.
Best Pract Res Clin Endocrinol Metab ; 35(5): 101579, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34563408

RESUMO

Sexual maturation in humans is characterized by a unique individual variability. Pubertal onset is a highly heritable polygenic trait but it is also affected by environmental factors such as obesity or endocrine disrupting chemicals. The last 30 years have been marked by a constant secular trend toward earlier age at onset of puberty in girls and boys around the world. More recent data, although more disputed, suggest an increased incidence in idiopathic central precocious puberty. Such trends point to a role for environmental factors in pubertal changes. Animal data suggest that the GnRH-neuronal network is highly sensitive to endocrine disruption during development. This review focuses on the most recent data regarding secular trend in pubertal timing as well as potential new epigenetic mechanisms explaining the developmental and transgenerational effects of endocrine disrupting chemicals on pubertal timing.


Assuntos
Disruptores Endócrinos , Puberdade Precoce , Animais , Disruptores Endócrinos/toxicidade , Feminino , Humanos , Masculino , Obesidade/induzido quimicamente , Obesidade/epidemiologia , Obesidade/genética , Puberdade , Puberdade Precoce/induzido quimicamente , Puberdade Precoce/epidemiologia , Puberdade Precoce/genética , Maturidade Sexual
5.
Nat Rev Endocrinol ; 17(2): 83-96, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33288917

RESUMO

The onset of puberty and the female ovulatory cycle are important developmental milestones of the reproductive system. These processes are controlled by a tightly organized network of neurotransmitters and neuropeptides, as well as genetic, epigenetic and hormonal factors, which ultimately drive the pulsatile secretion of gonadotropin-releasing hormone. They also strongly depend on organizational processes that take place during fetal and early postnatal life. Therefore, exposure to environmental pollutants such as endocrine-disrupting chemicals (EDCs) during critical periods of development can result in altered brain development, delayed or advanced puberty and long-term reproductive consequences, such as impaired fertility. The gonads and peripheral organs are targets of EDCs, and research from the past few years suggests that the organization of the neuroendocrine control of reproduction is also sensitive to environmental cues and disruption. Among other mechanisms, EDCs interfere with the action of steroidal and non-steroidal receptors, and alter enzymatic, metabolic and epigenetic pathways during development. In this Review, we discuss the cellular and molecular consequences of perinatal exposure (mostly in rodents) to representative EDCs with a focus on the neuroendocrine control of reproduction, pubertal timing and the female ovulatory cycle.


Assuntos
Disruptores Endócrinos/farmacologia , Exposição Ambiental , Epigênese Genética/efeitos dos fármacos , Estradiol/metabolismo , Hormônio Liberador de Gonadotropina/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Animais , Movimento Celular , Metilação de DNA/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Feminino , GABAérgicos/metabolismo , Células Germinativas/metabolismo , Ácido Glutâmico/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Código das Histonas/efeitos dos fármacos , Humanos , Hipotálamo/citologia , Hipotálamo/crescimento & desenvolvimento , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Masculino , Neurônios/metabolismo , Ovulação/efeitos dos fármacos , Ovulação/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal
6.
Environ Health Perspect ; 129(8): 87003, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383603

RESUMO

BACKGROUND: The effects of endocrine-disrupting chemicals (EDCs) on fertility and reproductive development represent a rising concern in modern societies. Although the neuroendocrine control of sexual maturation is a major target of EDCs, little is known about the potential role of the hypothalamus in puberty and ovulation disruption transmitted across generations. OBJECTIVES: We hypothesized that developmental exposure to an environmentally relevant dose of EDC mixture could induce multi- and/or transgenerational alterations of sexual maturation and maternal care in female rats through epigenetic reprograming of the hypothalamus. We investigated the transmission of a disrupted reproductive phenotype via the maternal germline or via nongenomic mechanisms involving maternal care. METHODS: Adult female Wistar rats were exposed prior to and during gestation and until the end of lactation to a mixture of the following 13 EDCs: di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), vinclozolin, prochloraz, procymidone, linuron, epoxynaxole, dichlorodiphenyldichloroethylene, octyl methoxynimmate, 4-methylbenzylidene camphor (4-MBC), butylparaben, and acetaminophen. Perinatally exposed offspring (F1) were mated with unexposed males to generate germ cell (F2) and transgenerationally exposed (F3 and F4) females. Sexual maturation, maternal behavior, and hypothalamic targets of exposure were studied across generations. RESULTS: Germ cell (F2) and transgenerationally (F3) EDC-exposed females, but not F1, displayed delayed pubertal onset and altered folliculogenesis. We reported a transgenerational alteration of key hypothalamic genes controlling puberty and ovulation (Kiss1, Esr1, and Oxt), and we identified the hypothalamic polycomb group of epigenetic repressors as actors of this mechanism. Furthermore, we found a multigenerational reduction of maternal behavior (F1-F3) induced by a loss in hypothalamic dopaminergic signaling. Using a cross-fostering paradigm, we identified that the reduction in maternal phenotype was normalized in EDC-exposed pups raised by unexposed dams, but no reversal of the pubertal phenotype was achieved. DISCUSSION: Rats developmentally exposed to an EDC mixture exhibited multi- and transgenerational disruption of sexual maturation and maternal care via hypothalamic epigenetic reprogramming. These results raise concerns about the impact of EDC mixtures on future generations. https://doi.org/10.1289/EHP8795.


Assuntos
Disruptores Endócrinos , Hipotálamo/efeitos dos fármacos , Comportamento Materno/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal , Animais , Disruptores Endócrinos/toxicidade , Epigênese Genética , Feminino , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Ratos , Ratos Wistar , Maturidade Sexual
7.
Best Pract Res Clin Endocrinol Metab ; 33(3): 101300, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31401055

RESUMO

The onset of puberty strongly depends on organizational processes taking place during the fetal and early postnatal life. Therefore, exposure to environmental pollutants such as Endocrine disrupting chemicals (EDCs) during critical periods of development can result in delayed/advanced puberty and long-term reproductive consequences. Human evidence of altered pubertal timing after exposure to endocrine disrupting chemicals is equivocal. However, the age distribution of pubertal signs points to a skewed distribution towards earliness for initial pubertal stages and towards lateness for final pubertal stages. Such distortion of distribution is a recent phenomenon and suggests environmental influences including the possible role of nutrition, stress and endocrine disruptors. Rodent and ovine studies indicate a role of fetal and neonatal exposure to EDCs, along the concept of early origin of health and disease. Such effects involve neuroendocrine mechanisms at the level of the hypothalamus where homeostasis of reproduction is programmed and regulated but also peripheral effects at the level of the gonads or the mammary gland.


Assuntos
Disruptores Endócrinos/efeitos adversos , Puberdade/efeitos dos fármacos , Animais , Poluentes Ambientais/efeitos adversos , Feminino , Homeostase/efeitos dos fármacos , Humanos , Hipotálamo/efeitos dos fármacos , Masculino , Puberdade Precoce/epidemiologia
8.
Endocrinology ; 160(11): 2558-2572, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503316

RESUMO

Exposure to bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical (EDC), is known to produce variable effects on female puberty and ovulation. This variability of effects is possibly due to differences in dose and period of exposure. Little is known about the effects of adult exposure to environmentally relevant doses of this EDC and the differences in effect after neonatal exposure. This study sought to compare the effects of neonatal vs adult exposure to a very low dose or a high dose of BPA for 2 weeks on ovulation and folliculogenesis and to explore the hypothalamic mechanisms involved in such disruption by BPA. One-day-old and 90-day-old female rats received daily subcutaneous injections of corn oil (vehicle) or BPA (25 ng/kg/d or 5 mg/kg/d) for 15 days. Neonatal exposure to both BPA doses significantly disrupted the estrous cycle and induced a decrease in primordial follicles. Effects on estrous cyclicity and folliculogenesis persisted into adulthood, consistent with a disruption of organizational mechanisms. During adult exposure, both doses caused a reversible decrease in antral follicles and corpora lutea. A reversible disruption of the estrous cycle associated with a delay and a decrease in the amplitude of the LH surge was also observed. Alterations of the hypothalamic expression of the clock gene Per1 and the reproductive peptide phoenixin indicated a disruption of the hypothalamic control of the preovulatory LH surge by BPA.


Assuntos
Compostos Benzidrílicos/toxicidade , Estrogênios não Esteroides/toxicidade , Ciclo Estral/efeitos dos fármacos , Ovário/efeitos dos fármacos , Ovulação/efeitos dos fármacos , Fenóis/toxicidade , Fatores Etários , Animais , Animais Recém-Nascidos , Compostos Benzidrílicos/administração & dosagem , Estrogênios não Esteroides/administração & dosagem , Feminino , Fenóis/administração & dosagem , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA